

SCBS144P-MAY 1992-REVISED NOVEMBER 2006

FEATURES

	LATURES	SN54LVTH16373 WD PACKAGE
•	Members of the Texas Instruments Widebus™ Family	SN74LVTH16373 DGG OR DL PACKAGE (TOP VIEW)
•	State-of-the-Art Advanced BiCMOS Technology (ABT) Design for 3.3-V Operation and Low Static-Power Dissipation	10E 1 48 1LE 1Q1 2 47 1D1
•	Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 3.3-V V _{CC})	1Q2 [] 3 46 [] 1D2 GND [] 4 45 [] GND 1Q3 [] 5 44 [] 1D3
•	Support Unregulated Battery Operation Down to 2.7 V	$1Q3 [13 +44] 1D3 1Q4 [16 +43] 1D4 V_{CC} [17 +42] V_{CC}$
•	Typical V _{OLP} (Output Ground Bounce) <0.8 V at V _{CC} = 3.3 V, T _A = 25° C	1Q5 [8 41] 1D5 1Q6 [9 40] 1D6
•	I _{off} and Power-Up 3-State Support Hot Insertion	GND 10 39 GND 1Q7 11 38 107
•	Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors	1Q8
•	Distributed V _{cc} and GND Pins Minimize High-Speed Switching Noise	2Q2 14 35 2D2 GND 15 34 GND
•	Flow-Through Architecture Optimizes PCB Layout	2Q3
•	Latch-Up Performance Exceeds 500 mA Per JESD 17	V _{CC} 18 31 V _{CC} 2Q5 19 30 2D5 2Q6 20 29 2D6
•	ESD Protection Exceeds JESD 22	GND [21 28] GND
	 2000-V Human-Body Model (A114-A) 	2Q7 🛛 22 27 🗍 2D7
	 200-V Machine Model (A115-A) 	2Q8 [23 26] 2D8
		2 0E 24 25 2LE

DESCRIPTION/ORDERING INFORMATION

The 'LVTH16373 devices are 16-bit transparent D-type latches with 3-state outputs designed for low-voltage (3.3-V) V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

T _A	PACKAG	iE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	FBGA – GRD	Deal of 4000	SN74LVTH16373GRDR	11.070
	FBGA – ZRD (Pb-free)	Reel of 1000	SN74LVTH16373ZRDR	– LL373
		Tube of 25	SN74LVTH16373DL	
	SSOP – DL		SN74LVTH16373DLG4	
–40°C to 85°C	550P - DL	Reel of 1000	SN74LVTH16373DLR	– LVTH16373
			SN74LVTH16373DLRG4	
	TSSOP – DGG	Reel of 2000	SN74LVTH16373DGGR	LVTH16373
	VFBGA – GQL	Reel of 1000	SN74LVTH16373GQLR	11.070
	VFBGA – ZQL (Pb-free)	Reel of 1000	SN74LVTH16373ZQLR	– LL373

ORDERING INFORMATION

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus is a trademark of Texas Instruments.

SCBS144P-MAY 1992-REVISED NOVEMBER 2006

ORDERING INFORMATION (continued)

T _A	PACKAGE	(1)	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–55°C to 125°C	CFP – WD	Tube	SNJ54LVTH16373WD	SNJ54LVTH16373WD
-55°C 10 125°C			5962-9681001QXA	3NJ34LVIH10373WD

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

These devices can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

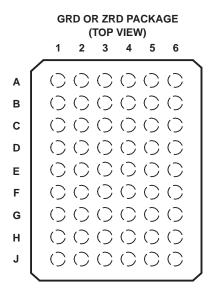
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

When V_{CC} is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

G	QL				L P /IE		KA	GE
	_	1	2	3	4	5	6	
Α)()	()	()	()	()	
в	() (Э	()	()	()	()	
С	()(Э	()	()	()	()	
D	() (Э	0	()	()	()	
Е	() (Э			()	()	
F	() (Э			()	()	
G	() (Э	()	()	()	()	
H	() (Э	()	()	()	()	
J	() (Э	()	()	()	()	
Κ	Ľ) (Э	()	0	0	0	J

TERMINAL ASSIGNMENTS⁽¹⁾ (56-Ball GQL/ZQL Package)


	1	2	3	4	5	6				
Α	1 0E	NC	NC	NC	NC	1CLK				
В	1Q2	1Q1	GND	GND	1D1	1D2				
С	1Q4	1Q3	V _{CC}	V _{CC}	1D3	1D4				
D	1Q6	1Q5	GND	GND	1D5	1D6				
Е	1Q8	1Q7			1D7	1D8				
F	2Q1	2Q2			2D2	2D1				
G	2Q3	2Q4	GND	GND	2D4	2D3				
Н	2Q5	2Q6	V _{CC}	V _{CC}	2D6	2D5				
J	2Q7	2Q8	GND	GND	2D8	2D7				
Κ	2 <mark>0E</mark>	NC	NC	NC	NC	2CLK				

(1) NC – No internal connection

TEXAS INSTRUMENTS www.ti.com

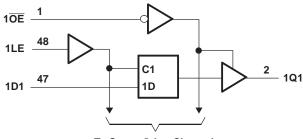
SN54LVTH16373, SN74LVTH16373 3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS

SCBS144P-MAY 1992-REVISED NOVEMBER 2006

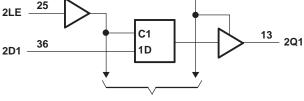
TERMINAL ASSIGNMENTS⁽¹⁾ (54-Ball GRD/ZRD Package)

	1	2	3	4	5	6
Α	1Q1	NC	1 0E	1LE	NC	1D1
В	1Q3	1Q2	NC	NC	1D2	1D3
С	1Q5	1Q4	V _{CC}	V _{CC}	1D4	1D5
D	1Q7	1Q6	GND	GND	1D6	1D7
E	2Q1	1Q8	GND	GND	1D8	2D1
F	2Q3	2Q2	GND	GND	2D2	2D3
G	2Q5	2Q4	V _{CC}	V _{CC}	2D4	2D5
н	2Q7	2Q6	NC	NC	2D6	2D7
J	2Q8	NC	2 <mark>0E</mark>	2LE	NC	2D8

(1) NC - No internal connection


FUNCTION TABLE (8-BIT SECTION)

	INPUTS		OUTPUT
OE	CLK	D	Q
L	Н	Н	Н
L	н	L	L
L	L	Х	Q ₀
н	Х	х	Z


LOGIC DIAGRAM (POSITIVE LOGIC)

24

2<u>0E</u> –

To Seven Other Channels

To Seven Other Channels

Pin numbers shown are for the DGG, DL, and WD packages.

SCBS144P-MAY 1992-REVISED NOVEMBER 2006

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT	
V _{CC}	Supply voltage range		-0.5	4.6	V	
VI	Input voltage range ⁽²⁾		-0.5	7	V	
Vo	Voltage range applied to any output in the high-in	npedance or power-off state ⁽²⁾	-0.5	7	V	
Vo	Voltage range applied to any output in the high st	tate ⁽²⁾	-0.5	V _{CC} + 0.5	V	
	Connect into any output in the law state	SN54LVTH16373		96	~ ^	
I _O	Current into any output in the low state	SN74LVTH16373	-0.5 4.6 -0.5 7 wer-off state ⁽²⁾ -0.5 7 -0.5 V _{CC} + 0.5 7 /TH16373 96 /TH16373 128 /TH16373 48 /TH16373 -50 /TH16373 -50 /TH16373 -50 /TH16373 44 /TH16373 44 /TH16373 64 /TL -50 /TH16373 48 /TH16373 64 /TL -50 /TL -50	mA		
	Current into any output in the high state ⁽³⁾	SN54LVTH16373		48	mA	
I _O		SN74LVTH16373		64		
I _{IK}	Input clamp current	V ₁ < 0		-50	mA	
Ι _{ΟΚ}	Output clamp current	V _O < 0		-50	mA	
		DGG package		70		
0	Declare the multi-median $a^{(4)}$	DL package		63	°C	
θ_{JA}	Package thermal impedance ⁽⁴⁾	GQL/ZQL package		42	°C	
		GRD/ZRD package		36		
T _{stg}	Storage temperature range		-65	150	°C	

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed. (3) This current flows only when the output is in the high state and $V_0 > V_{CC}$.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

			SN54LVTH	16373	SN74LVTH	16373	UNIT
			MIN	MAX	MIN	MAX	UNII
V _{CC}	Supply voltage		2.7	3.6	2.7	3.6	V
VIH	High-level input voltage		2		2		V
V _{IL}	Low-level input voltage			0.8		0.8	V
VI	Input voltage			5.5		5.5	V
I _{OH}	High-level output current			-24		-32	mA
I _{OL}	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outpts enabled		10		10	ns/V
$\Delta t / \Delta V_{CC}$	Power-up ramp rate		200		200		μs/V
T _A	Operating free-air temperature		-55	125	-40	85	°C

All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCBS144P-MAY 1992-REVISED NOVEMBER 2006

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	METER	TEOT OF		SN54L\	/TH16373	SN74L\	1.1611-		
PARAMETER		TEST CO	ONDITIONS	MIN 1	TYP ⁽¹⁾ MAX	MIN	TYP ⁽¹⁾ MAX	UNI	
V _{IK}		V _{CC} = 2.7 V,	I _I = -18 mA		-1.2		-1.2	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V},$	I _{OH} = −100 μA	V _{CC} - 0.2		$V_{CC} - 0.2$			
.,		V _{CC} = 2.7 V,	I _{OH} = -8 mA	2.4		2.4		V	
V _{ОН}		N 2.V	I _{OH} = -24 mA	2				V	
		$V_{CC} = 3 V$	I _{OH} = -32 mA			2			
		V 07V	I _{OL} = 100 μA		0.2		0.2		
		V _{CC} = 2.7 V	I _{OL} = 24 mA		0.5		0.5		
1			I _{OL} = 16 mA		0.4		0.4	V	
V _{OL}		V _{CC} = 3 V	I _{OL} = 32 mA		0.5		0.5	v	
	$\frac{ V_{CC} = 3 \text{ V} }{ I_{OL} = 48 \text{ mA}} = 0.55$ $\frac{ V_{CC} = 0 \text{ or } 3.6 \text{ V}, V_I = 64 \text{ mA}}{ V_{CC} = 0 \text{ or } 3.6 \text{ V}, V_I = 5.5 \text{ V}} = 10$ $\frac{ V_{CC} = 0 \text{ or } 3.6 \text{ V}, V_I = V_{CC} \text{ or } \text{GND}}{ V_{CC} = 3.6 \text{ V}, V_I = V_{CC} \text{ or } \text{GND}} = 1$								
			I _{OL} = 64 mA				0.55		
		$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V		10		10		
I,		V _{CC} = 3.6 V,	$V_I = V_{CC}$ or GND		±1		±1	μA	
	Data		$V_{I} = V_{CC}$		1		1		
	inputs	V _{CC} = 3.6 V	$V_{I} = 0$		-5		-5		
I _{off}	L	$V_{CC} = 0,$	V_{I} or V_{O} = 0 to 4.5 V				±100	μA	
			V _I = 0.8 V	75		75			
I _{I(hold)}	Data inputs	$V_{CC} = 3 V$	V ₁ = 2 V	-75		-75		μA	
	inputs	V _{CC} = 3.6 V, ⁽²⁾	$V_{I} = 0$ to 3.6 V				±500		
OZH		V _{CC} = 3.6 V,	V _O = 3 V		5		5	μA	
I _{OZL}		V _{CC} = 3.6 V,	V _O = 0.5 V		-5		-5	μA	
I _{OZPU}		$\frac{V_{CC}}{OE} = 0$ to 1.5 V, $V_{O} = $ $\overline{OE} = $ don't care	0.5 V to 3 V,		±100 ⁽³⁾		±100	μA	
I _{OZPD}		$\frac{V_{CC}}{OE}$ = 1.5 V to 0, V _O = \overline{OE} = don't care	0.5 V to 3 V,		±100 ⁽³⁾		±100	μA	
		V _{CC} = 3.6 V,	Outputs high		0.19		0.19		
сс		$I_{0} = 0,$	Outputs low		5		5	mA	
		$V_{I} = V_{CC}$ or GND	Outputs disabled		0.19		0.19		
۵I _{CC} ⁽⁴⁾		V_{CC} = 3 V to 3.6 V, On Other inputs at V _{CC} or	e input at V _{CC} – 0.6 V, GND		0.2		0.2	mA	
Ci		$V_{I} = 3 V \text{ or } 0$			3		3	pF	
Co		$V_0 = 3 V \text{ or } 0$			9		9	pF	

(1) All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$. (2) This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

On products compliant to MIL-PRF-38535, this parameter is not production tested. (3)

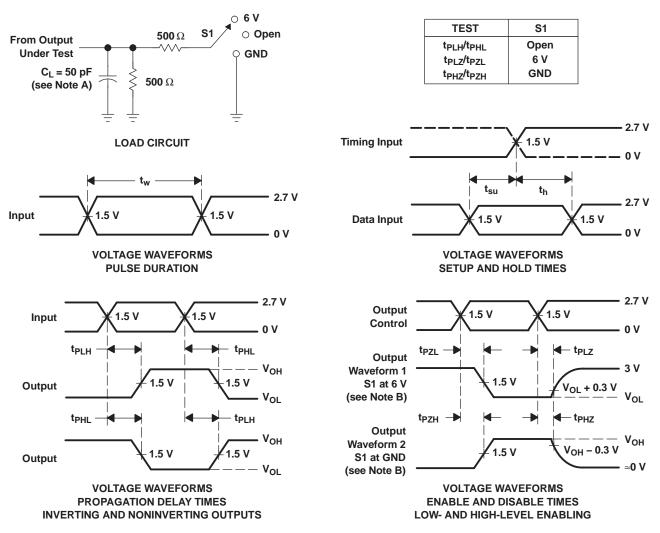
(4) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.

SN54LVTH16373, SN74LVTH16373 3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS SCB5144P-MAY 1992-REVISED NOVEMBER 2006

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		SN5	54LV	ГН1637	3	SN74LVTH16373				UNIT
		V _{CC} = 3.3 ± 0.3 V	V_{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		3.3 V 3 V	V _{CC} = 2.7 V		
		MIN N	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tw	Pulse duration, LE high	3		3		3		3		ns
t _{su}	Setup time, data before LE \downarrow	2		2		1		0.6		ns
t _h	Hold time, data after LE \downarrow	3		3.3		1		1.1		ns


Switching Characteristics

over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

		TO (OUTPUT)	SN54LVTH16373									
PARAMETER	FROM (INPUT)		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		V _{CC} = 3.3 ± 0.3 V		V	V _{CC} = 2.7 V		UNIT
			MIN	MAX	MIN	MAX	MIN	TYP ⁽¹⁾	MAX	MIN	MAX	
t _{PLH}	D	Q	1.4	4.5		5.2	1.5	2.7	3.8		4.2	20
t _{PHL}		Q	1.4	4.4		4.8	1.5	2.5	3.6		4	ns
t _{PLH}	LE	Q	1.8	5.5		5.8	2.1	3	4.3		4.8	ns
t _{PHL}			1.8	5.2		5.6	2.1	2.9	4		4	115
t _{PZH}	ŌĒ	Q	1.4	5.7		6.7	1.5	2.8	4.3		5.1	20
t _{PZL}	UE	Q	1.4	5.5		6	1.5	2.8	4.3		4.7	ns
t _{PHZ}	OE	Q	2	6		6.2	2.4	3.5	5		5.4	
t _{PLZ}	OE	Q	1.4	5.2		5.6	2	3.2	4.7		4.8	ns
t _{sk(LH)}									0.5			20
t _{sk(HL)}									0.5			ns

(1) All typical values are at V_{CC} = 3.3 V, $T_A = 25^{\circ}C$.

SCBS144P-MAY 1992-REVISED NOVEMBER 2006

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
- D. The outputs are measured one at a time, with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing		Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9681001QXA	ACTIVE	CFP	WD	48	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9681001QX A SNJ54LVTH16373 WD	Samples
SN74LVTH16373DGGR	ACTIVE	TSSOP	DGG	48	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16373	Samples
SN74LVTH16373DL	ACTIVE	SSOP	DL	48	25	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16373	Samples
SN74LVTH16373DLR	ACTIVE	SSOP	DL	48	1000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	LVTH16373	Samples
SNJ54LVTH16373WD	ACTIVE	CFP	WD	48	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9681001QX A SNJ54LVTH16373 WD	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

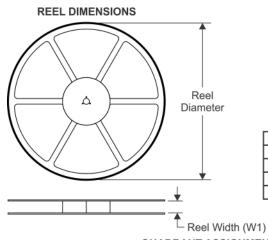
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

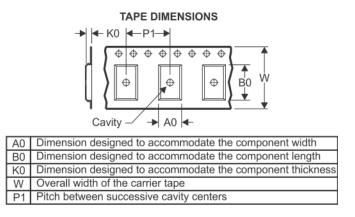
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN54LVTH16373, SN74LVTH16373 :

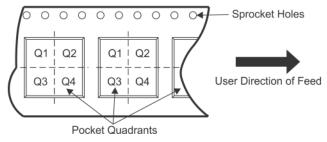
- Catalog : SN74LVTH16373
- Enhanced Product : SN74LVTH16373-EP, SN74LVTH16373-EP
- Military : SN54LVTH16373

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

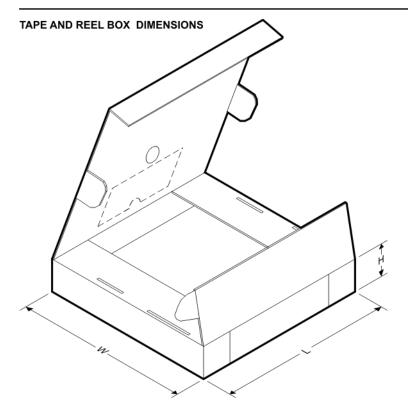

PACKAGE MATERIALS INFORMATION

Texas Instruments


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

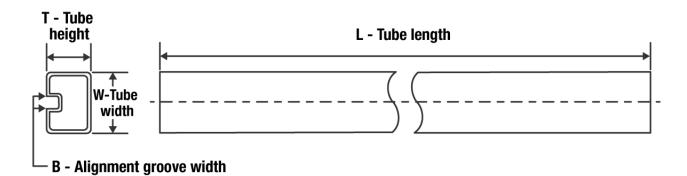

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVTH16373DGGR	TSSOP	DGG	48	2000	330.0	24.4	8.6	13.0	1.8	12.0	24.0	Q1
SN74LVTH16373DLR	SSOP	DL	48	1000	330.0	32.4	11.35	16.2	3.1	16.0	32.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

5-Jan-2022

*All dimensions are nominal

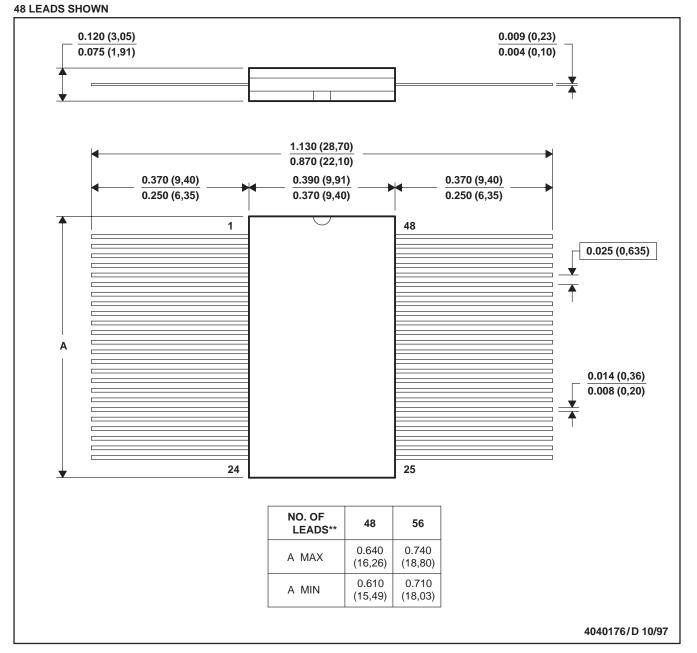

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVTH16373DGGR	TSSOP	DGG	48	2000	367.0	367.0	45.0
SN74LVTH16373DLR	SSOP	DL	48	1000	367.0	367.0	55.0

www.ti.com

5-Jan-2022

TUBE

*All dimensions are nominal

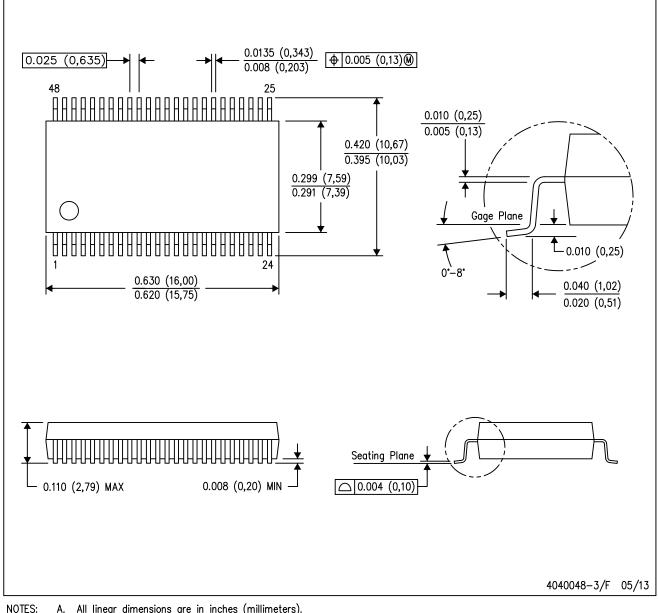

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
SN74LVTH16373DL	DL	SSOP	48	25	473.7	14.24	5110	7.87

MECHANICAL DATA

MCFP010B - JANUARY 1995 - REVISED NOVEMBER 1997

CERAMIC DUAL FLATPACK

WD (R-GDFP-F**)

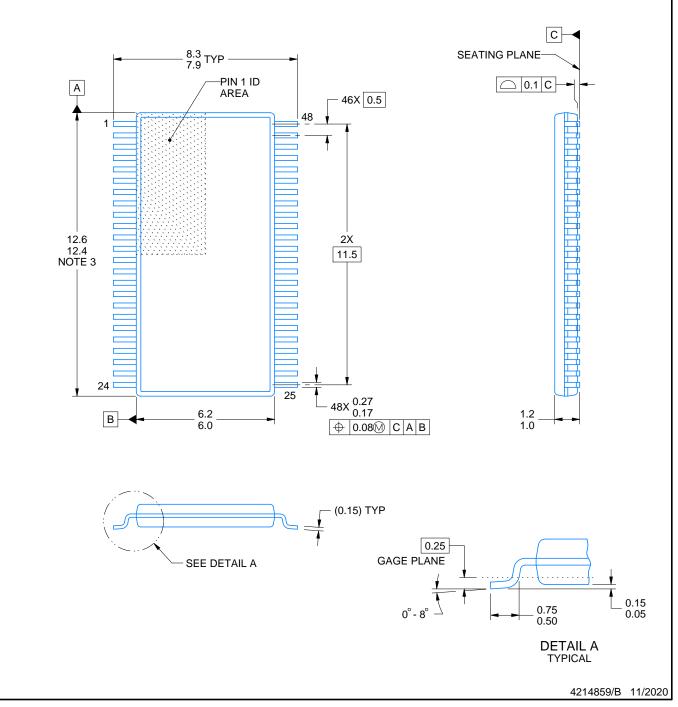


- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only
 - E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA
 - GDFP1-F56 and JEDEC MO-146AB

DL (R-PDSO-G48)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118


PowerPAD is a trademark of Texas Instruments.

PACKAGE OUTLINE

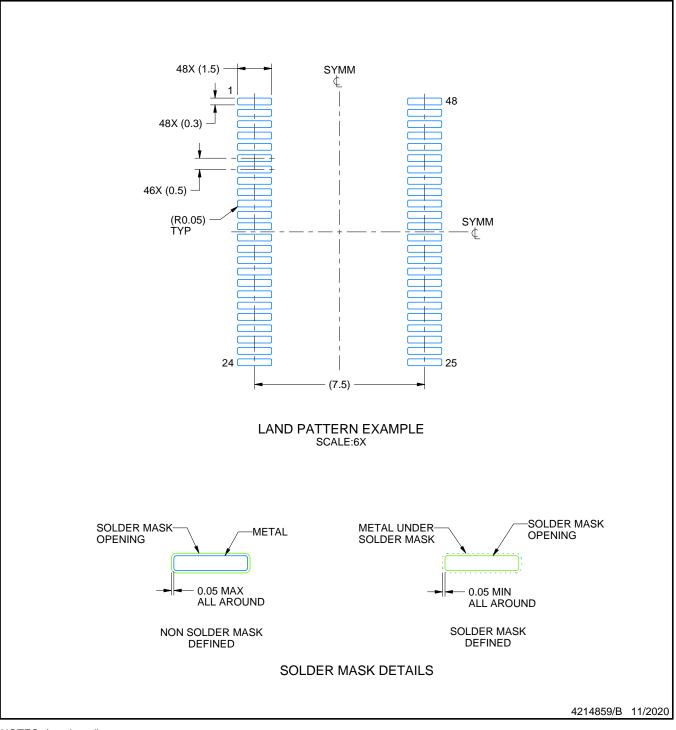
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not

- exceed 0.15 mm per side. 4. Reference JEDEC registration MO-153.


DGG0048A

DGG0048A

EXAMPLE BOARD LAYOUT

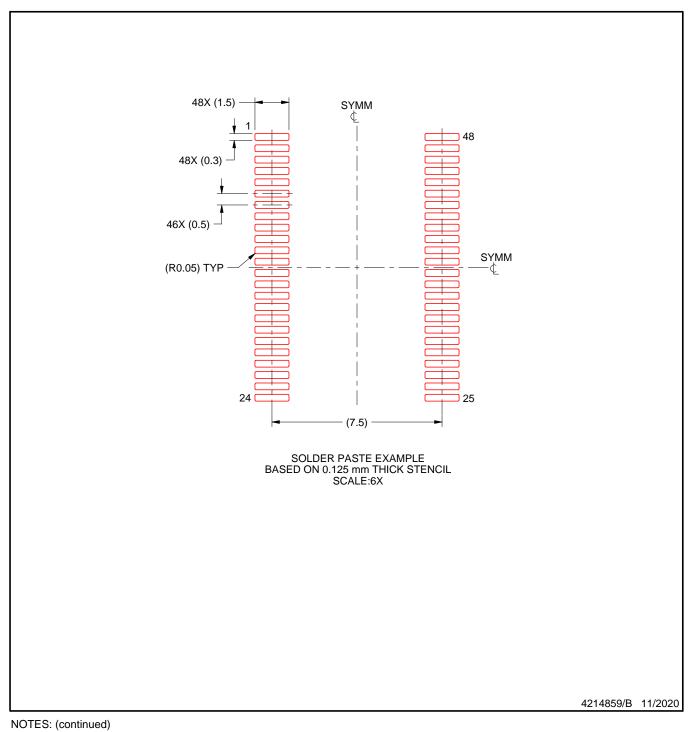
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DGG0048A

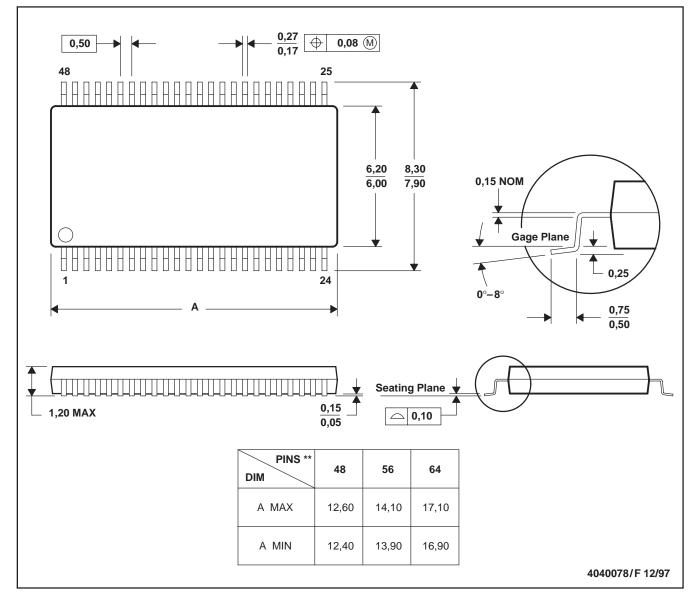
EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate

design recommendations. 8. Board assembly site may have different recommendations for stencil design.


MECHANICAL DATA

MTSS003D - JANUARY 1995 - REVISED JANUARY 1998

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated