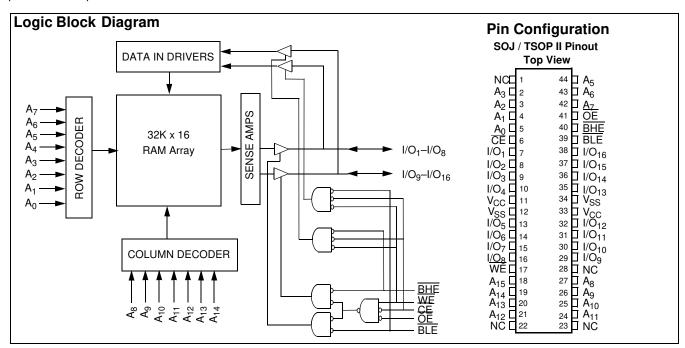


32K x 16 Static RAM

Features

- · High speed
 - $t_{AA} = 12, 15 \text{ ns}$
- · CMOS for optimum speed/power
- · Low active power
 - 825 mW (max.)
- · Low CMOS standby power (L version only)
 - 2.75 mW (max.)
- · Automatic power-down when deselected
- · Independent control of upper and lower bits
- Available in lead-free and non-lead-free 44-pin TSOP II and 44-pin (400-mil) SOJ packages

Functional Description


The CY7C1020B is a high-performance CMOS static RAM organized as 32,768 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption when deselected.

Writing to the device is accomplished by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_1$ through I/O $_8$), is written into the location specified on the address pins (A $_0$ through A $_{15}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_9$ through I/O $_{16}$) is written into the location specified on the address pins (A $_0$ through A $_{15}$).

Reading from the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins will appear on I/O₁ to I/O₈. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory will appear on I/O₉ to I/O₁₆. See the truth table at the back of this data sheet for a complete description of read and write modes.

The input/output pins (I/O $_1$ through I/O $_{16}$) are placed in <u>a</u> high-impedance state when the <u>device</u> is deselected (CE HIGH), the outputs <u>are disabled</u> (OE HIGH), the BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

The CY7C1020B is available in standard 44-pin TSOP Type II and 44-pin 400-mil-wide SOJ packages.

Selection Guide

		CY7C1020B-12	CY7C1020B-15
Maximum Access Time (ns)		12	15
Maximum Operating Current (mA)		140	130
Maximum CMOS Standby Current (mA)		3	3
	L	0.5	0.5

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied-55°C to +125°C Supply Voltage on V_{CC} to Relative $GND^{[1]}$ -0.5V to +7.0V DC Voltage Applied to Outputs in High Z State [1]-0.5V to V_{CC} + 0.5V DC Input Voltage [1]-0.5V to V_{CC} + 0.5V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature ^[2]	v _{cc}
Commercial	0°C to +70°C	5V ± 10%

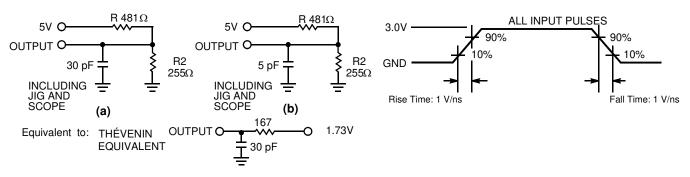
Electrical Characteristics Over the Operating Range

•		Test		CY7C10	020B-12	CY7C1020B-15		
Parameter	Description	Conditions		Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA			0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	6.0	2.2	6.0	V	
V _{IL}	Input LOW Voltage ^[1]		-0.5	8.0	-0.5	8.0	V	
I _{IX}	Input Leakage Current	$GND \leq V_{I} \leq V_{CC}$	-1	+1	-1	+1	μΑ	
l _{OZ}	Output Leakage Current	$GND \le V_1 \le V_{CC}$, Output Disable	ed	-1	+1	-1	+1	μΑ
I _{OS}	Output Short Circuit Current[3]	V _{CC} = Max., V _{OUT} = GND			-300		-300	mA
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max., I_{OUT} = 0 mA,$ $f = f_{MAX} = 1/t_{RC}$			140		130	mA
I _{SB1}	Automatic CE Power-Down Current—TTL Inputs	Max. V_{CC} , $\overline{CE} \ge V_{IH}$ $V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$			20		20	mA
I _{SB2}	Automatic CE Power-Down	Max. V_{CC} , $\overline{CE} \ge V_{CC} - 0.3V$,			3		3	mA
	Current—CMOS Inputs	$V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, f = 0	L		0.5		0.5	mA

Capacitance^[4]

Parameter	rameter Description Test Conditions		Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

Thermal Resistance^[4]


Parameter	Description	Test Conditions	TSOP II Package	SOJ Package	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	50.55	56.31	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)		15.8	32.9	°C/W

Notes:

- 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns.
- 2. T_A is the case temperature.
- 3. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
- 4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

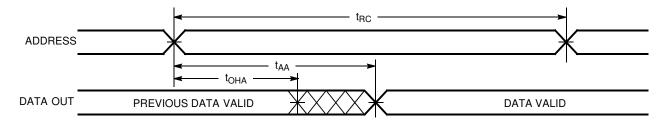
Switching Characteristics^[5] Over the Operating Range

		CY7C1	020B-12	CY7C1		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle	•		1	•	•	•
t _{RC}	Read Cycle Time	12		15		ns
t _{AA}	Address to Data Valid		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		ns
t _{ACE}	CE LOW to Data Valid		12		15	ns
t _{DOE}	OE LOW to Data Valid		6		7	ns
t _{LZOE}	OE LOW to Low Z ^[6]	0		0		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		6		7	ns
t _{LZCE}	CE LOW to Low Z ^[6]	3		3		ns
t _{HZCE}	CE HIGH to High Z ^[6, 7]		6		7	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		12		15	ns
t _{DBE}	Byte Enable to Data Valid		6		7	ns
t _{LZBE}	Byte Enable to Low Z	0		0		ns
t _{HZBE}	Byte Disable to High Z		6		7	ns
Write Cycle ^[8]	•	<u>.</u>				
t _{WC}	Write Cycle Time	12		15		ns
t _{SCE}	CE LOW to Write End	9		10		ns
t _{AW}	Address Set-Up to Write End	8		10		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	8		10		ns
t _{SD}	Data Set-Up to Write End	6 8		8		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[6]	3		3		ns
t _{HZWE}	WE LOW to High Z ^[6, 7]		6		7	ns
t _{BW}	Byte Enable to End of Write	8		9		ns

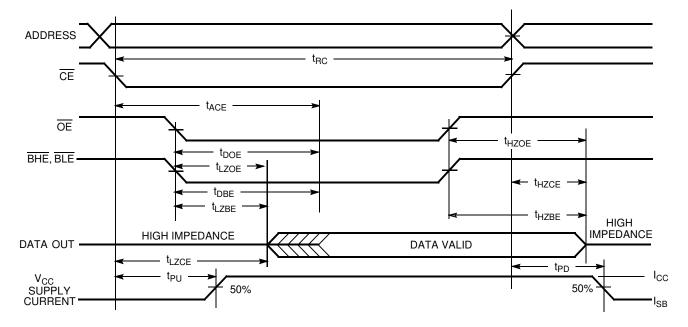
Notes:

^{5.} Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

^{6.} At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.


7. t_{HZOE}, t_{HZDE}, t_{HZDE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 <u>p</u>F as in <u>part</u> (b) of AC <u>Test Loads</u>. Transition is <u>measured ±500 mV</u> from steady-state voltage.

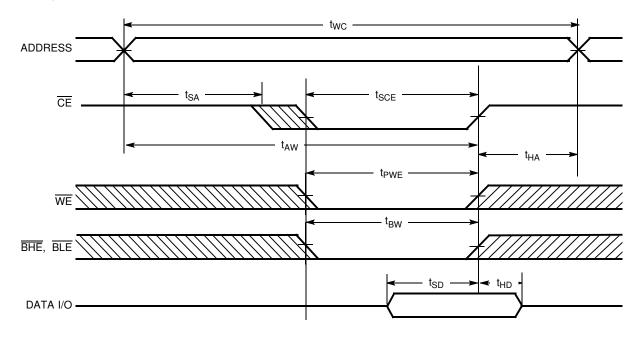
8. The internal write time of the memory is defined by the overlap of <u>CE LOW</u>, <u>WE LOW</u> and <u>BHE / BLE LOW</u>. <u>CE</u>, <u>WE</u> and <u>BHE / BLE</u> must be LOW to initiate a write, and the transition of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.



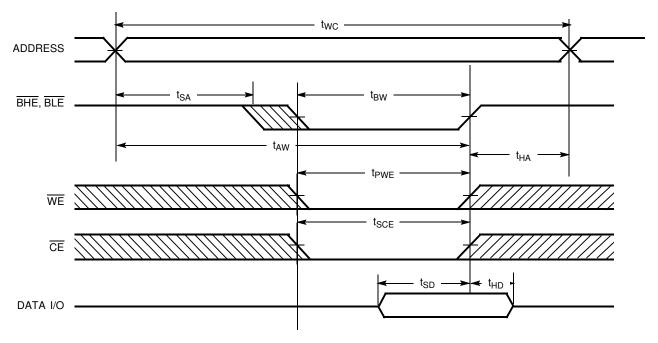
Switching Waveforms

Read Cycle No. 1^[9, 10]

Read Cycle No. 2 (OE Controlled)[10, 11]



- 9. <u>Devi</u>ce is continuously selected. <u>OE</u>, <u>CE</u>, <u>BHE</u> and/or <u>BHE</u> = V_{IL}. 10. <u>WE</u> is HIGH for read cycle.
- 11. Address valid prior to or coincident with $\overline{\sf CE}$ transition LOW.

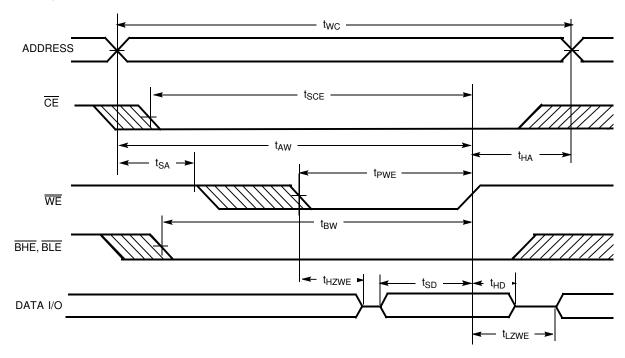


Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text{CE}}$ Controlled)[12, 13]

Write Cycle No. 2 (BLE or BHE Controlled)

Notes:


^{12. &}lt;u>Data I/O</u> is high impedance if <u>OE</u> or <u>BHE</u> and/or <u>BLE</u> = V_{IH}.

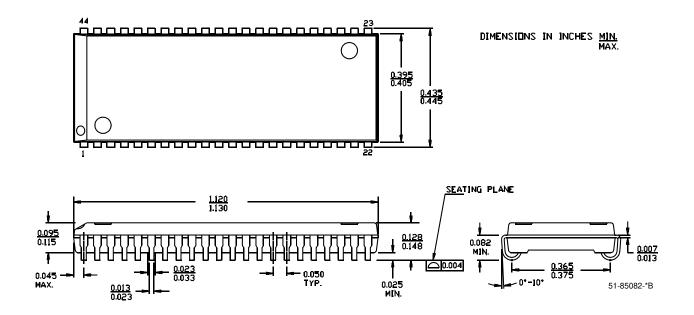
13. If <u>CE</u> goes HIGH simultaneously with <u>WE</u> going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)

Truth Table

CE	OE	WE	BLE	BHE	I/O ₁ –I/O ₈	I/O ₉ –I/O ₁₆	Mode	Power
Н	Х	Χ	Χ	Х	High Z	High Z	Power-Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read – All bits	Active (I _{CC})
			L	Н	Data Out	High Z	Read – Lower bits only	Active (I _{CC})
			Н	L	High Z	Data Out	Read – Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write – All bits	Active (I _{CC})
			L	Н	Data In	High Z	Write – Lower bits only	Active (I _{CC})
			Н	L	High Z	Data In	Write – Upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})
L	Х	Х	Н	Н	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})

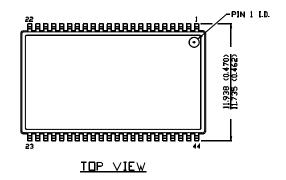


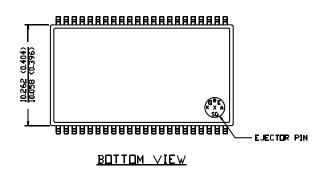
Ordering Information

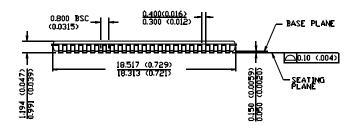
Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
12	CY7C1020B-12VC	51-85082	44-pin (400-Mil) Molded SOJ	Commercial
	CY7C1020BL-12VC			
	CY7C1020B-12VXC		44-pin (400-Mil) Molded SOJ (Pb-free)	
	CY7C1020B-12ZC	51-85087	44-pin TSOP Type II	
	CY7C1020BL-12ZC			
	CY7C1020B-12ZXC		44-pin TSOP Type II (Pb-free)	
15	CY7C1020B-15VC	51-85082	44-pin (400-Mil) Molded SOJ	
	CY7C1020BL-15VC			
	CY7C1020B-15ZC	51-85087	44-pin TSOP Type II	
	CY7C1020BL-15ZC			
	CY7C1020B-15ZXC		44-pin TSOP Type II (Pb-free)	

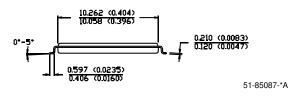
Package Diagrams

44-pin (400-Mil) Molded SOJ (51-85082)






Package Diagrams (continued)


44-pin TSOP II (51-85087)

DIMENSION IN MM (INCH)
MAX
NIN.

All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title: CY7C1020B 32K x 16 Static RAM Document #: 38-05171						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	115439	05/09/02	DSG	New Data Sheet		
*A	116869	08/21/02	DFP	Added L-Power Specifications.		
*B	426747	See ECN	ZSD	Changed the address of Cypress Semiconductor Corporation on Page #1 from "3901 North First Street" to "198 Champion Court". Added thermal resistance table. Updated the ordering information table and replaced the Package Name column with Package Diagram.		