

EATURES:

Standard Intel [®] CRPS form-factor
73.5mm x 185.0mm x 40.0mm ¹
(2.89" x 7.28" x 1.57")
2700W total output capability 200-240Vac Nom.
1200W total output capability 100-127Vac Nom.
IEC320-C20 AC input connector
Card Edge DC Output and Signal I/O
CRPS compliant connection alignment height of
8.5mm
HVDC 240V _{DC} capability ²
Operation over the range 0°C +55°C without
derating
■ ≥96% efficiency at 50% load
12Vdc Main output, 2700W
12Vdc Standby output, 36W
Compact Package, >82W per cubic inch
N+1 redundancy
 Active current sharing (main 12Vdc)
Integral ORING isolation devices for both outputs
 Overvoltage, overcurrent, overtemperature fault
protection

Internal cooling fan, variable speed controlled ¹The max height of 40mm is limited by the 40mm fan.

Actual chassis height is 39mm.

²Only in regions where safety regulations permit

PRODUCT OVERVIEW

D1U74T-W-2700-12-HBxC is a series of compact 2700W highly efficient front end power supply modules that provide a 12Vdc main and a 12Vdc standby output. These power supply modules feature an ultra-high-power density of 82W/cubic inch and are capable of active current sharing. A multi-function status LED with corresponding hardware logic signals is provided, as well as an Intel® CRPS compliant PMBus™ digital communications bus. This 1U low profile power supply is ideal for delivering reliable, efficient power to servers, workstations, storage systems and other 12V distributed power architectures.

ORDERING GUIDE

	Total Out	out Power				
Part Number	Total Output Power 200-240Vac 100-127Vac (Vin Nom.) (Vin Nom.)		Main Output	Standby Output		rflow ection
D1U74T-W-2700-12-HB4C	2700W 1200W		12Vdc	12Vdc	Back to Fron	
INPUT CHARACTERISTICS						
Parameter	Conditions		Min.	Nom.	Max.	Units
	High Line		180	200-240	264	Vac
Input Operating Range	Low Line	90	100-127	140	Vac	
	HVDC ¹	180	240	300	Vdc	
Input Source Frequency			47	50/60	63	Hz
	High Line (200-24	40Vac)			15.5	
Input Current	Low Line (100-12			14	A	
	HVDC (240Vdc)			13.5		
Inrush Current ²	Cold start @ 264	Vac			35	Apk
Power Factor ⁴	230Vac 100% Lo	ad	0.95	0.99		W/VA
Efficiency (220)(ac) evoluting for	10% load		90			
Efficiency (230Vac), excluding fan load 80 Plus [®] Certification	20% load		94			%
Titanium ³	50% load		96			70
IIIdIIIUIII	100% load	91				

² Excludes EMI filter capacitors

³ Planned submission

⁴ Complies with Plug Load Solutions 80+ PF Titanium requirements

OUTPUT VOLTAGE CHARACTERISTICS

Output	Parameter	Conditions	Min.	Тур.	Max.	Units	
12V	Output Set Point Accuracy	50% load; Tamb =25°C	12.08	12.20	12.32	Vdc	
	Line and Load Regulation ²	Measured at PSU side of connector	11.84	12.20	12.57	Vdc	
	Ripple Voltage & Noise ^{1,2}	20MHz Bandwidth; Min Load Capacitance			120	mV p-p	
	Output Current	2700W (180-264Vac) Continuous	1		225	٨	
		1200W (90-140Vac) Continuous	1		100	A	
	Load Capacitance		2,000		70,000	μF	
12VSB	Output Set Point Accuracy	50% load; Tamb =25°C	11.95	12.20	12.45	Vdc	
	Line and Load Regulation ³	Measured at PSU side of connector	11.59	12.20	12.81	VUC	
	Ripple Voltage & Noise ^{1,3}	20MHz Bandwidth; Min Load			120	mV p-p	
	Output Current		0.1		3	A	
	Load Capacitance		100		3100	μF	

Ripple and noise are measured with 0.1µF of ceramic capacitance and 10µF of tantalum capacitance on each of the power supply outputs. A short coaxial cable to the scope termination is used and minimum output bus capacitance specified in above table. To help reduce switching ripple further, an additional 2,200uF low ESR electrolytic capacitor (or equivalent) may be placed in parallel. ² Minimum Load of 1A to comply with these limits.

³ Minimum Load of 0.1A to meet these limits

muRata R Murata Power Solutions

PROTECTIO	N CHARACTERISTICS					
Output	Parameter	Conditions	Min.	Тур.	Max.	Units
Ambient	Overtemperature ^{2,3}		60		70	
Overcurrent (high line) Main 12V ⁴	Latching ¹ after 20sec		260			
	Overcurrent (high line)	Latches ¹ after 50-100ms		285		А
		Latches ¹ after 10 - 100µs		356		Л
	Short-circuit	Latching ¹ ; percentage of full load, immediate shutdown	>160			%
	Overvoltage	Latching ¹	13.5		14.5	Vdc
12VSB Short-ci	Overcurrent	OCP: >10ms Automatically recovers after removal of fault condition		3.8		٨
	Short-circuit	Immediate shutdown Automatically recovers after removal of fault condition	9			A
	Overvoltage	Automatically recovers after removal of fault condition	13.5		14.5	Vdc

Latch-off requires elimination of fault condition and then recycling either the AC input or PS_ON re-cycle to resume operation

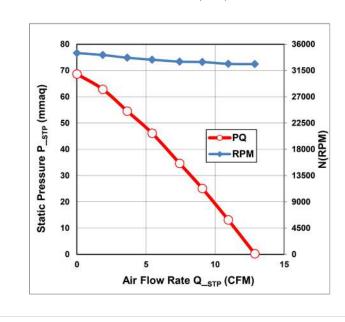
² Operating the power supply above the maximum specified operating temperature is considered an abnormal condition, may negatively impact power supply life and is not recommended ³As reported by the internal power supply PMBus intake air temperature sensor

¹A fault on any output other than Standby does not cause the Standby output to turn off

Parameter	Conditions	Min.	Тур.	Max.	Units		
Storage Temperature Range		-40		70			
Operating Temperature Dange (Cap Laugh)	2700W (180-264Vac) Continuous	0		55	°C		
Operating Temperature Range (Sea Level) ¹	1200W (90-140Vac) Continuous	0		55	0		
Humidity	Operating; non-condensing	5		85	%		
humany	Non-operating; non-condensing	5	95	%			
Altitude, Operating	Derate 1°C per 304M to simulate the effects of altitude imposed on the power supply cooling system	-50		3050			
Altitude Non-Operating		-50		15,200	m		
Shock	non-operating			30			
	Sine sweep; 5-500Hz			0.5	G		
Operational Vibration	Random vibration, 5-500Hz			3.13	G		
MTBF	Tamb = 55° C; 75% Load; nominal AC input	250K			Hrs.		
Operating Life	Tamb = 55°C; 20% time at 20% load; 80% of the time at 80% load; nominal AC input	5			Years		
Weight			1.05		kg		
Input Fuses	Caution: Single line fuse on the line (Hot) wire of the AC input. The input fuse.	use shall be	a fast bl	ow type 20A	axial 420		

¹Based testing power supply in free air; actual results in an end user's system may vary due to the effects of back-pressure.

ISOLATION CHARACTERISTICS							
Parameter	Conditions	Min.	Тур.	Max.	Units		
Inculation Cofet, Dating (Test Voltage	Input to Output - Reinforced	4242			Vdc		
Insulation Safety Rating / Test Voltage	Input to Chassis - Basic	2121			VUC		



EMISSIONS AND IMMUNITY					
Characteristic	Standard	Compliance			
Input Current Harmonics	IEC/EN 61000-3-2	Complies with Class A limits			
Voltage Fluctuation and Flicker	IEC/EN 61000-3-3	Complies			
Conducted Emissions	FCC 47 CFR Part15/CISPR22/EN55032	Class A			
ESD Immunity	IEC/EN 61000-4-2	± 8 KV Contact; ± 15 KV air discharge; Criteria A ²			
Radiated Field Immunity	IEC/EN 61000-4-3	3V/m, 1KHz, 80% AM, 80MHz to 1GHz Criteria A ²			
Electrical Fast Transients/Burst Immunity	IEC/EN 61000-4-4	¹ Level 3 (2kV), criteria A ²			
Surge Immunity	IEC/EN 61000-4-5	¹ Level 3 (2kV Line-Earth, 2kV Line-Line), criteria A ²			
RF Conducted Immunity	IEC/EN 61000-4-6 Level 2 (3V/M) criteria A ²				
Voltage Dips, Interruptions	IEC/EN 61000-4-11	230Vin, 100% load, Phase 0°, Dip 100% Duration 10ms (VSB:A,V1:B) 230Vin, 50% load, Phase 0°, Dip 100% Duration 20ms (VSB:A, V1:B) 230Vin, 100% load, Phase 0°, Dip 100% Duration > 20ms (VSB, V1:B)			
Safety Approval Standards	UL62368-1: 2014 (2nd Edition) (Information Technology Equipment – safety - Part 1: General Requirements). CAN/CSA-C22.2 No. 62368-1: 2014 (2nd Edition) (Information Technology Equipment - Safety - Part 1: General Requirements) TUV: EN 62368-1:2014 (2nd Edition) CQC: GB4943.1-2011 BSMI: CNS14336-1				

² Installed in system

AIRFLOW PERFORMANCE

P-Q CURVE (Fan speed: 100% duty cycle, test method: AMCA 210-07, Fig. 12) Back to Front Airflow (HB4C) Model

D1U74T-W-2700-12-HBxC

73.5mm CRPS-185 1U Front End AC-DC Power Supply

Signal Name	I/0	Description			Interface details
PW_OK	0	This is a power OK signal and is pulled high to indicate	Open Collector ^{1,4} Source current: 2mA max. Sink Current: 0.4mA max. Rise/Fall time: 100uS max.		
VIN_GOOD	0	This signal is an output that indicates input source power	er (AC and HVDC) is presen	t and within operating limits	Pull-up: 2K OHM 1,2
SMBALERT#	0	SMBALERT# is a PMBus™ 1.2 complaint signal driven	low to alert the system that	a warning/fault ⁶ occurred.	pull-up: 10k OHM ^{1,4} Source current: 4mA max. Sink Current: 50uA max. Rise/Fall time: 100uS max.
PRESENT_L	0	Passive signal that can be used by the host system to d GND/+12V RTN within the power supply module	etect the presence of an ins	stalled PSU. Connected to	
PSON#	I	Provides main 12V output on/off control; "ON" when sin		•	pull-up: 10K OHM ^{1,2} Source current: 4mA max.
		Internal SMBus slave device address selection settings			
		Slave Address (hex) PSU µP / EEPROM	A1 pin state	A0 pin state	
A0 & A1	1	B0h / A0h	Low	Low	Each pulled up: 10K OHM ^{1,5}
	•	B2h / A2h	Low	High	
		B4h / A4h	High	Low	
		B6h / A6h	High	High	
PMBus SCL	I/0	Serial clock input to PSU compatible with PMBus [™] 1.2.			pull-up: 2K OHM ^{1,2}
PMBus SDA	I/0	Bi-directional serial data line compatible with PMBus™			pull-up 2K OHM ^{1,2}
12VRS + & -	I	These signal pins can be connected at system side of lo output voltage drop due to load connections. PSU will not be damaged by Incorrect polarity connection		·	
ISHARE	I/O	This signal is an analogue DC voltage that forms a com- host system and changes in proportion to load. Each PS maintaining current share performance. The DC bus vol 4Vdc for two PSUs sharing the same load equally.	SU uses this signal to contro	I the PSU bus voltage thereby	Analogue voltage: 0 to +8V
Cold		CR signals from all load sharing power supply modules bus, required for cold redundant operation, compliant w functions as follows:	ith CRPS Common Require	ment Specification. This bus	Pulled 680R to internal bias supply voltage of the ACTIVE &
Redundancy Bus	I/O	 Pull-up bus voltage: Bus pull-up is provided by the ACTIVE". Only the PSU assigned this roll provides "Master". 	MASTER PSU; Pull-Down = 40 OHM.		
		 Each bus connected PSU drives the CR signal low Each bus connected PSU powers on its main outp 			
			acrapiuly within 100µ0 alle	I GOLOGIUN ON LOW SLALE.	

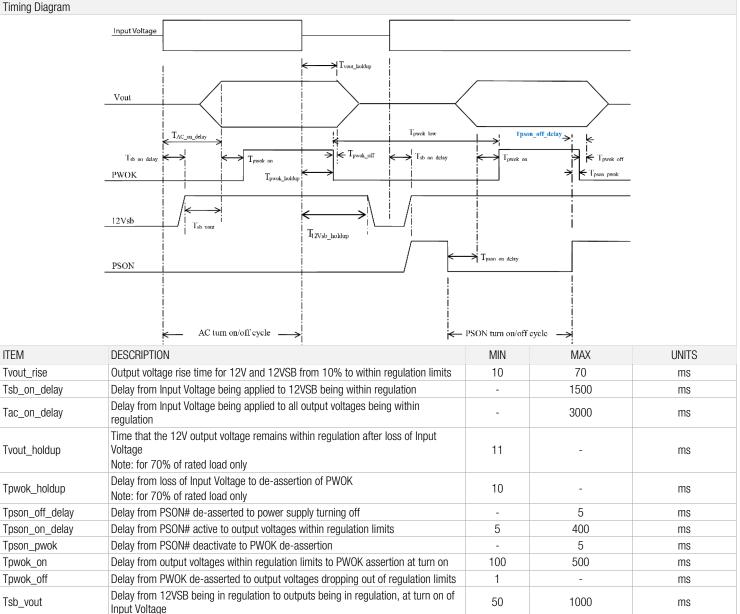
3) Pulled down to VSB return.

4) Logic high 2.4Vdc to 3.46Vdc; A logic low is 0 to 0.4Vdc

5) Logic high 2.4Vdc to 3.57Vdc; A logic low is 0Vdc to 0.4Vdc

6) This product supports "SMBALERT_MASK" providing flexibility for System/Host to configure Fault/Warning bits SMBAERT# supports. Refer to the Intel® CRPS -185 specifications for additional details.

Murata Power Solutions


<u>muRata</u>

STATUS LED	
Single bi-colour (Amber/Green) LED provides the following indication characteristics:	
PSU Status	LED Status
Output on and OK	Green
AC power not present	Off
Standby state; AC present; Main output off, VSB on	1Hz Blink Green
power supply module is in cold standby state or always standby state as defined in the Cold Redundancy section of CRPS Common Requirement Specification	1Hz Blink Green
NO AC power however AC input power is applied to a parallel connected power supply module	Amber
Power supply critical event causing a shutdown; failure, overcurrent, short circuit, overvoltage, fan failure, over temperature	Amber
Power supply warning events where the power supply continues to operate; high temperature, high power, high current, slow fan	1 Hz Blink Amber
Power supply firmware updating	2Hz Blink Green

TIMING CHARACTERISTICS

ITEM

Time the 12VSB output voltage stays within regulation after loss of Input Voltage

12VSB_holdup

ms

70

-

P9-P7

(B1-B9)

P12-P10

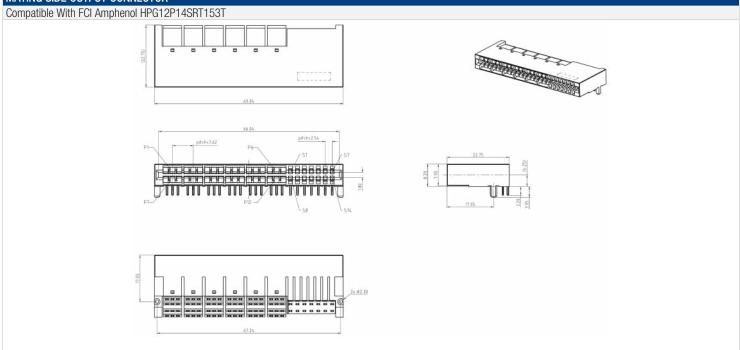
(B10-B18)

Bottom Side

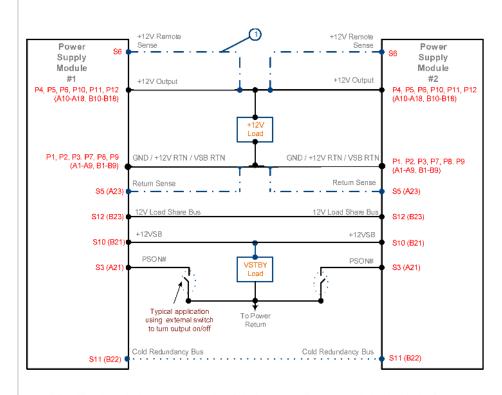
DC OUTPUT & SIGNAL INTERFACE (POWER MODULE SIDE, CARD EDGE)

	S1 (A19)	S7 (A25)	s 1	14 (B25)	S8 (B19)
P1-P3 (A1-A9)	P4-P6 (A10-A18)		Í		P12-P (B10-B
	Top Side				Bottom

	TOP-SID)E:		BOTTOM-SIDE:				
Name	High Pwr conn ²	Regular Conn ¹	Sequence	Name	High Pwr Conn ²	Regular Conn1	Sequence	
GND/+12V RTN3	P1	A1		GND/+12V RTN3	P7	B1		
GND/+12V RTN	PI	A2	Long	GND/+12V RTN	Ρ/	B2	Long	
GND/+12V RTN		A3		GND/+12V RTN		B3		
GND/+12V RTN		A4		GND/+12V RTN		B4		
GND/+12V RTN	P2	A5	Long	GND/+12V RTN	P8	B5	Long	
GND/+12V RTN		A6		GND/+12V RTN		B6		
GND/+12V RTN		A7		GND/+12V RTN		B7		
GND/+12V RTN	P3	A8	Long	GND/+12V RTN	P9	B8	Long	
GND/+12V RTN		A9		GND/+12V RTN		B9		
+12V		A10		+12V		B10		
+12V	P4	A11	STD	+12V	P10	B11	STD	
+12V		A12		+12V		B12		
+12V		A13		+12V		B13		
+12V	P5	A14	STD	+12V	P11	B14	STD	
+12V		A15		+12V		B15		
+12V		A16		+12V		B16		
+12V	P6	A17	STD	+12V	P12	B17	STD	
+12V		A18		+12V		B18		
PMBus SDA	S1	A19	STD	A0 (SMBus address)	S8	B19	STD	
PMBus SCL	S2	A20	STD	A1 (SMBus address)	S9	B20	STD	
PSON#	S3	A21	SHORT	+12VSB	S10	B21	STD	
SMBAlert#	S4	A22	STD	Cold Redundancy Bus	S11	B22	STD	
Return Sense	S5	A23	STD	12V Load share bus	S12	B23	STD	
+12V Remote Sense	S6	A24	STD	PRESENT_L	S13	B24	SHORT	
PWOK	S7	A25	STD	VIN_GOOD	S14	B25	STD	


¹ Regular 50-pin card edge connector FCI-Amphenol model 10035388-102LF SHOWN FOR INFORMATION PURPOSES ONLY included as part of the Intel CRPS-185 specifications. However, the recommended mating connector for this power supply is <u>High Power Amphenol</u>.

² High power connector Amphenol model <u>HPG12P14SRT153T</u>

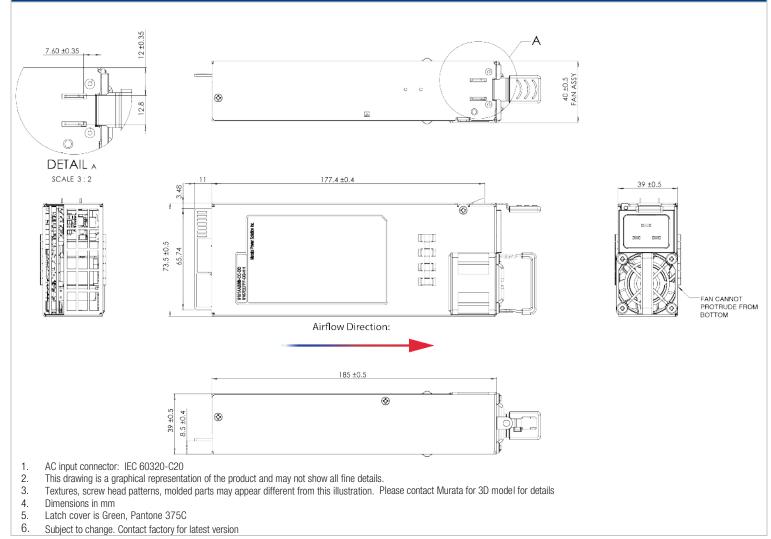

³ GND/+12V RTN are connected internally to Chassis

muRata Power Solutions

MATING SIDE OUTPUT CONNECTOR

WIRING DIAGRAM

 Dotted lines show optional remote sense connections. Optional remote sense lines can be attached to a load that is a distance away from the power supply to improve regulation at the load


Current Sharing Notes

- 1. Main Output: Current sharing is achieved using the active current share method
- Current sharing can be achieved with the +12V Remote Sense and Return Sense connected to the common load
- The 12V Output and 12V STBY output has an internal ORING MOSFET for additional redundancy/internal short protection
- 4. The current sharing pin is connected between sharing units (forming an ISHARE bus). It is an input and/or an output (bi-directional analogue bus) as the voltage on the line controls the current share between sharing units. A power supply will respond to a change in this voltage but a power supply can also change the voltage depending on the load drawn from it. On a single unit the voltage on the pin (and the common ISHARE bus would read 8VDC at 100% load (power module capability). For two units sharing the same load this would read approximately 4VDC for perfect current sharing (i.e. 50% power capability per unit)
- 5. The load for both the main 12V and the VSB rails at initial startup shall not be allowed to exceed the capability of a single unit. The load can be increased after assertion of PW_OK signal, to allow all sharing units to achieve steady state regulation

MECHANCIAL ENVELOPE

APPLICATION NOTES		
Document Number	Description	Notes
ACAN-120	PMBus Protocol	Link to ACAN-120
ACAN-123	D1U74T-12-CONC2.7K Connector Interface Card	Link to ACAN-123
ACAN-134	Related product brief: Crypto Mining Connector Interface Card D1U74T-BRB	Link to ACAN-134

Murata Power Solutions, Inc. 129 Flanders Rd. Westborough, Ma 01581, USA. ISO 9001 REGISTERED

This product is subject to the following operating requirements and the Life and Safety Critical Application Sales Policy: Refer to: <u>https://www.murata-ps.com/requirements/</u> Murata Power Solutions. Inc. makes no representation that the use of its products in the circuits described herein. or the use of other technical information contained herein, will not inf

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.

©2021 Murata Power Solutions, Inc.