MOSFET – Power, Single, **N-Channel, DPAK/IPAK**

30 V, 41 A

Features

- Low R_{DS(on)} to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- Three Package Variations for Design Flexibility
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

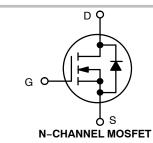
Applications

- CPU Power Delivery
- DC-DC Converters

MAXIMUM RATINGS (T_J = 25°C unless otherwise stated)

Pa	rameter		Symbol	Value	Unit
Drain-to-Source Vo	oltage		V _{DSS}	30	V
Gate-to-Source Vo	ltage		V_{GS}	±20	V
Continuous Drain Current R _{0JA} (Note 1)		$T_A = 25^{\circ}C$ $T_A = 100^{\circ}C$	Ι _D	12.7 9.0	Α
Power Dissipation R _{0JA} (Note 1)		T _A = 25°C	P _D	2.56	W
Continuous Drain Current R _{θJA}		T _A = 25°C	Ι _D	9.4	Α
(Note 2)	Steady State	T _A = 100°C		6.6	
Power Dissipation $R_{\theta JA}$ (Note 2)	State	T _A = 25°C	P_{D}	1.38	W
Continuous Drain Current R _{e.IC}		T _C = 25°C	I _D	41	Α
(Note 1)		$T_C = 100^{\circ}C$		29	
Power Dissipation R _{θJC} (Note 1)		T _C = 25°C	P _D	26.3	W
Pulsed Drain Current	t _p =10μs	T _A = 25°C	I _{DM}	150	Α
Current Limited by F	Package	T _A = 25°C	I _{DmaxPkg}	40	Α
Operating Junction Temperature	Operating Junction and Storage Temperature		T _J , T _{STG}	–55 to +175	°C
Source Current (Bo	Source Current (Body Diode)		Is	24	Α
Drain to Source dV/	Drain to Source dV/dt			6.0	V/ns
Energy ($T_J = 25^{\circ}C$, $I_L = 19 A_{pk}$, $L = 0.1$	Single Pulse Drain-to-Source Avalanche Energy ($T_J = 25$ °C, $V_{DD} = 24$ V, $V_{GS} = 10$ V, $I_L = 19$ A_{pk} , $L = 0.1$ mH, $R_G = 25$ Ω)		EAS	18	mJ
Lead Temperature f (1/8" from case for		g Purposes	TL	260	°C

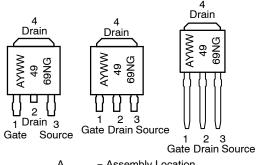
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


- 1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
- 2. Surface-mounted on FR4 board using the minimum recommended pad size.

ON Semiconductor®

http://onsemi.com

V _{(BR)DSS}	R _{DS(ON)} MAX	I _D MAX
30 V	9.0 mΩ @ 10 V	41 A
00 V	19 mΩ @ 4.5 V	417



CASE 369AA **DPAK** (Bent Lead) STYLE 2

CASE 369AC 3 IPAK (Straight Lead)

CASE 369D **IPAK** (Straight Lead DPAK)

MARKING DIAGRAMS & PIN ASSIGNMENTS

= Assembly Location Α

= Year WW = Work Week 4969N = Device Code = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

THERMAL RESISTANCE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Junction-to-Case (Drain)	$R_{ heta JC}$	5.7	°C/W
Junction-to-TAB (Drain)	$R_{\theta JC-TAB}$	4.3	
Junction-to-Ambient - Steady State (Note 3)	$R_{ heta JA}$	58.6	
Junction-to-Ambient - Steady State (Note 4)	$R_{\theta JA}$	108.6	

- Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
 Surface-mounted on FR4 board using the minimum recommended pad size.

FLECTRICAL CHARACTERISTICS (T. - 25°C unless otherwise specified)

Parameter	Symbol	Test Cond	ition	Min	Тур	Max	Unit
OFF CHARACTERISTICS						•	•
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D =$: 250 μA	30			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /				17		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V _{GS} = 0 V, V _{DS} = 24 V	T _J = 25°C			1.0	
		V _{DS} = 24 V	T _J = 125°C			10	μΑ
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS}$	= ±20 V			±100	nA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = 250 \mu A$		1.5	1.8	2.5	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J				4.5		mV/°C
Drain-to-Source On Resistance	R _{DS(on)}	V _{GS} = 10 V	I _D = 30 A		6.9	9.0	
			I _D = 15 A		6.9		
		V _{GS} = 4.5 V	I _D = 30 A		13.6	19	mΩ
			I _D = 15 A		13.2		
Forward Transconductance	9 _{FS}	V _{DS} = 1.5 V, I _I	_O = 30 A		36		S
CHARGES, CAPACITANCES AND GATE F	RESISTANCE						
Input Capacitance	C _{ISS}				837		
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 MH	Hz, V _{DS} = 15 V		347		pF
Reverse Transfer Capacitance	C _{RSS}				180		
Total Gate Charge	Q _{G(TOT)}				9.0		
Threshold Gate Charge	Q _{G(TH)}	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	45.V.L. 00.A		1.42		0
Gate-to-Source Charge	Q_{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 3.5 \text{ V}$	15 V, I _D = 30 A		2.8		nC
Gate-to-Drain Charge	Q_GD				4.8		
Total Gate Charge	Q _{G(TOT)}	V _{GS} = 10 V, V _{DS} = 1	5 V, I _D = 30 A		16.5		nC
SWITCHING CHARACTERISTICS (Note 6)							
Turn-On Delay Time	t _{d(ON)}				10		
Rise Time	t _r	$V_{GS} = 4.5 \text{ V}, V_{D}$	_{IS} = 15 V,		27		ns
		I _D = 15 A, R _G					

- 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
- 6. Switching characteristics are independent of operating junction temperatures.
 7. Assume terminal length of 110 mils.

Fall Time

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Symbol	Test Condi	tion	Min	Тур	Max	Unit
SWITCHING CHARACTERISTICS (No	ote 6)						
Turn-On Delay Time	t _{d(ON)}				6.5		
Rise Time	t _r	V _{GS} = 10 V, V _{DS}	_s = 15 V,		20.2		
Turn-Off Delay Time	t _{d(OFF)}	V_{GS} = 10 V, V_{DS} = 15 V, I_{D} = 15 A, R_{G} = 3.0 Ω			17.2		ns
Fall Time	t _f				4.2		
DRAIN-SOURCE DIODE CHARACTE	RISTICS						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V,	T _J = 25°C		0.91	1.1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		$V_{GS} = 0 \text{ V},$ $I_S = 30 \text{ A}$ $T_J =$	T _J = 125°C		0.82		V
Reverse Recovery Time	t _{RR}		-		20.8		
Charge Time	t _a	V _{GS} = 0 V, dIS/dt =	= 100 A/μs,		9.8		ns
Discharge Time	t _b	V_{GS} = 0 V, dIS/dt = 100 A/ μ s, I _S = 30 A			11		
Reverse Recovery Charge	Q _{RR}				8.0		nC
PACKAGE PARASITIC VALUES							
Source Inductance (Note 7)	L _S				2.85		nΗ
Drain Inductance, DPAK	L _D				0.0164		
Drain Inductance, IPAK (Note 7)	L _D	T _A = 25°	С		1.88		
Gate Inductance (Note 7)	L _G				4.9		
Gate Resistance	R _G				1.0	2.2	Ω

- 5. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2%.
- 6. Switching characteristics are independent of operating junction temperatures.7. Assume terminal length of 110 mils.

ORDERING INFORMATION

Device	Package	Shipping [†]
NTD4969NT4G	DPAK (Pb-Free)	2500 / Tape & Reel
NTD4969N-1G	IPAK (Pb-Free)	75 Units / Rail
NTD4969N-35G	IPAK Trimmed Lead (Pb-Free)	75 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL PERFORMANCE CURVES

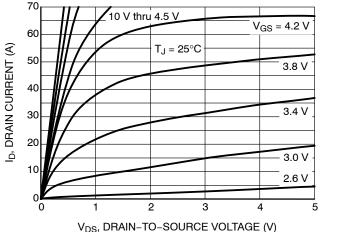
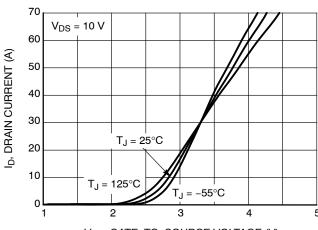



Figure 1. On-Region Characteristics

V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Figure 2. Transfer Characteristics

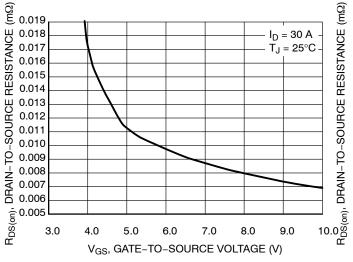


Figure 3. On-Resistance vs. Gate-to-Source Voltage

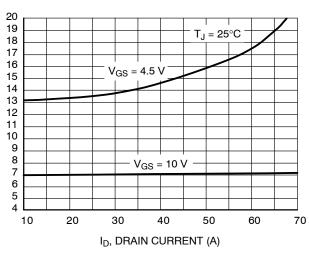
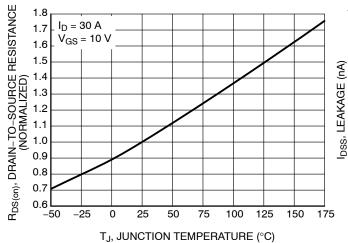
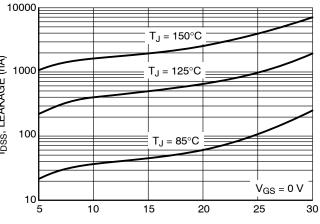
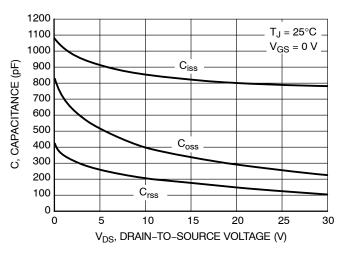


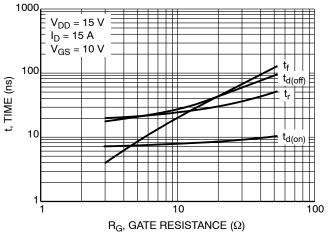
Figure 4. On-Resistance vs. Drain Current and Gate Voltage


Figure 5. On–Resistance Variation with Temperature

V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V)

Figure 6. Drain-to-Source Leakage Current vs. Voltage


TYPICAL PERFORMANCE CURVES

10 V_{GS}, GATE-TO-SOURCE VOLTAGE (V) 9 8 7 6 5 Q_{gd} Qgs 4 3 $I_D = 30 A$ $T_{.I} = 25^{\circ}C$ 2 $V_{DD} = 15 V$ $V_{GS} = 10 A$ 0 6 7 8 9 10 11 12 13 14 15 16 17 18 Q_G, TOTAL GATE CHARGE (nC)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage vs. Total Charge

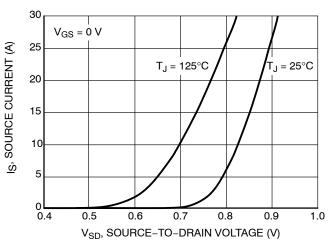
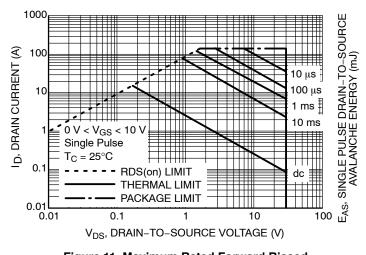



Figure 9. Resistive Switching Time Variation vs. Gate Resistance

Figure 10. Diode Forward Voltage vs. Current

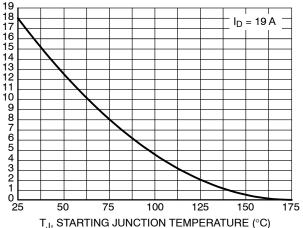
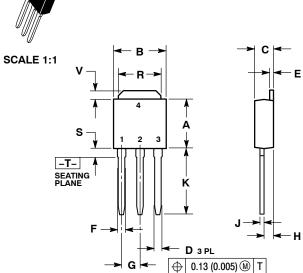


Figure 11. Maximum Rated Forward Biased Safe Operating Area


Figure 12. Maximum Avalanche Energy vs. Starting Junction Temperature

MECHANICAL CASE OUTLINE

DATE 15 DEC 2010

STYLE 2:

PIN 1. GATE

3

STYLE 6: PIN 1. MT1 2. MT2 3. GATE

2. DRAIN

4. DRAIN

MT2

SOURCE

STYLE 3: PIN 1. ANODE

2. CATHODE

4. CATHODE

3 ANODE

STYLE 7: PIN 1. GATE 2. COLLECTOR

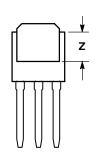
3. EMITTER

COLLECTOR

STYLE 1: PIN 1. BASE

3

STYLE 5: PIN 1. GATE


2. ANODE 3. CATHODE

ANODE

2. COLLECTOR

EMITTER

COLLECTOR

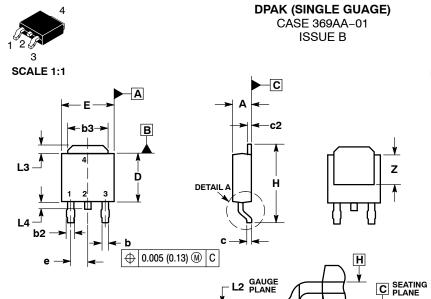
NOTES:

- DIMENSIONING AND TOLERANCING PER
 ANSI V14 5M 1992
- ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.235	0.245	5.97	6.35
В	0.250	0.265	6.35	6.73
С	0.086	0.094	2.19	2.38
D	0.027	0.035	0.69	0.88
E	0.018	0.023	0.46	0.58
F	0.037	0.045	0.94	1.14
G	0.090	BSC	2.29	BSC
Н	0.034	0.040	0.87	1.01
J	0.018	0.023	0.46	0.58
K	0.350	0.380	8.89	9.65
R	0.180	0.215	4.45	5.45
S	0.025	0.040	0.63	1.01
٧	0.035	0.050	0.89	1.27
Z	0.155		3.93	

MARKING DIAGRAMS

STYLE 4:
PIN 1. CATHODE
2. ANODE
3. GATE
4. ANODE
Discrete

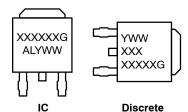

XXXXX
ALYWW
X

xxxxxxxxx = Device Code
A = Assembly Location
IL = Wafer Lot
Y = Year
WW = Work Week

DOCUMENT NUMBER:	98AON10528D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	IPAK (DPAK INSERTION MOUNT)		PAGE 1 OF 1	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

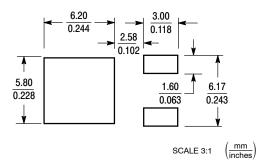
DETAIL A ROTATED 90° CW **DATE 03 JUN 2010**


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: INCHES.
 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-MENSIONS b3, L3 and Z.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
- FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE
- DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- 6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.086	0.094	2.18	2.38
A1	0.000	0.005	0.00	0.13
b	0.025	0.035	0.63	0.89
b2	0.030	0.045	0.76	1.14
b3	0.180	0.215	4.57	5.46
С	0.018	0.024	0.46	0.61
c2	0.018	0.024	0.46	0.61
D	0.235	0.245	5.97	6.22
E	0.250	0.265	6.35	6.73
е	0.090	BSC	2.29	BSC
Н	0.370	0.410	9.40	10.41
L	0.055	0.070	1.40	1.78
L1	0.108	REF	2.74	REF
L2	0.020	BSC	0.51	BSC
L3	0.035	0.050	0.89	1.27
L4		0.040		1.01
Z	0.155		3.93	

STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE STYLE 1: PIN 1. BASE STYLE 2: PIN 1. GATE STYLE 3: PIN 1. ANODE 2. COLLECTOR 3. EMITTER 2. CATHODE 3. ANODE 2. DRAIN 3. SOURCE 4. COLLECTOR 4. DRAIN CATHODE STYLE 5: STYLE 6: STYLE 7: PIN 1. GATE 2. ANODE 3. CATHODE PIN 1. GATE 2. COLLECTOR PIN 1. MT1 2. MT2 3. GATE 3. EMITTER 4. ANODE COLLECTOR


GENERIC MARKING DIAGRAM*

XXXXXX = Device Code Α = Assembly Location L = Wafer Lot ٧ = Year = Work Week WW = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking.

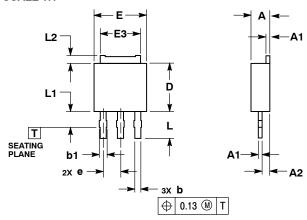
SOLDERING FOOTPRINT*

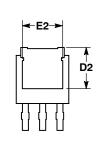
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

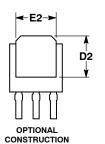
DOCUMENT NUMBER:	98AON13126D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	DPAK (SINGLE GAUGE)		PAGE 1 OF 1	

ON Semiconductor and un are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others

MECHANICAL CASE OUTLINE




3.5 MM IPAK, STRAIGHT LEAD


CASE 369AD **ISSUE B**

DATE 18 APR 2013

- NOTES:
 1.. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2.. CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.
- DIMENSIONS D AND E DO NOT INCLUDE MOLD GATE OR MOLD FLASH.

	MILLIN	IETERS
DIM	MIN	MAX
Α	2.19	2.38
A1	0.46	0.60
A2	0.87	1.10
b	0.69	0.89
b1	0.77	1.10
D	5.97	6.22
D2	4.80	
E	6.35	6.73
E2	4.57	5.45
E3	4.45	5.46
е	2.28	BSC
L	3.40	3.60
L1		2.10
L2	0.89	1.27

GENERIC MARKING DIAGRAMS*

Integrated

STYLE 1: PIN 1. BASE

STYLE 5:

PIN 1. GATE

ANODE
 CATHODE

ANODE

2. COLLECTOR 3. EMITTER COLLECTOR

STYLE 2: PIN 1. GATE

STYLE 6:

PIN 1. MT1

MT2
 GATE

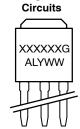
MT2

2. DRAIN 3. SOURCE DRAIN

STYLE 3: PIN 1. ANODE 2. CATHODE 3. ANODE

STYLE 7:

CATHODE


PIN 1. GATE 2. COLLECTOR 3. EMITTER COLLECTOR

STYLE 4: PIN 1. CATHODE 2. ANODE

3. GATE ANODE

AYWW XXX XXXXXG

Discrete

XXXXXX = Device Code Α = Assembly Location

L = Wafer Lot Υ = Year WW = Work Week G = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

	3 5 MM IPAK STRAIGHT I	Printed versions are uncontrolled except when stamped "CONTROLLED	COPY" in red.
DOCUMENT NUMBER: 98AON23319D Electronic versions are uncontrolled except when accessed of Printed versions are uncontrolled except when stamped "COI			COPY" in red.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales