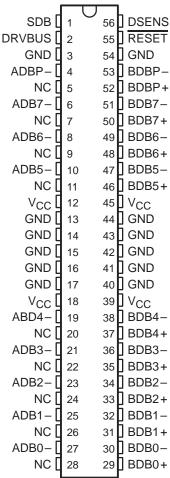
- **Provides High-Voltage Differential SCSI** From Single-Ended Controller When Used With the SN75970B Control Transceiver
- Meets or Exceeds the Requirements of EIA Standard RS-485 and ISO-8482 Standards
- ESD Protection on Bus Pins to 12 kV
- Packaged in Shrink Small-Outline Package with 25 mil Terminal Pitch and Thin Small-Package with 20 mil Terminal Pitch
- Low Disabled-Supply Current 32 mA Typ
- **Thermal Shutdown Protection**
- **Positive- and Negative-Current Limiting**
- Power-Up/-Down Glitch Protection
- **Open-Circuit Failsafe Receivers**


description

The SN75971B SCSI differential converter-data is a 9-channel RS-485 transceiver. When used in conjunction with its companion control transceiver, the SN75970B, the resulting chip set provides the superior electrical performance of differential SCSI from a single-ended SCSI bus or controller. A 16-bit Ultra-SCSI (or Fast-20) SCSI bus can be implemented with just three devices (two data and one control) in the space efficient, 56-pin, shrink small-outline package (SSOP) or thin shink small outline package (TSSOP) and a few external components. An 8-bit SCSI bus requires only one data and one control transceiver.

The SN75971B is available in a B2 (20 Mxfer) version and a B1 (10 Mxfer) version.

In a typical differential SCSI node, the SCSI controller provides an enable for each external RS-485 transceiver channel. This could require as many as 27

DGG OR DL PACKAGE (TOP VIEW)

Pins 13-17 and 40-44 are connected together to the package lead frame and to signal ground.

NC - No internal connection

extra terminals for a 16-bit differential bus controller or relegate a 16-bit, single-ended controller to only an 8-bit differential bus. Using the standard nine SCSIcontrol signals, the SN75970B control transceiver decodes the state of the bus and enables the SN75971B data transceiver to transmit the single-ended SCSI input signals (A side) differentially to the cable or receive the differential cable signals (B side) and drive the single-ended outputs to the controller.

A reset function, which disables all outputs and clears internal latches, can be accomplished from two external inputs and two internally-generated signals. RESET (reset) and DSENS (differential sense) are available to external circuits for a bus reset or to disable all outputs should a single-ended cable be inadvertently connected to a differential connector. Internally-generated power-up and thermal-shutdown signals have the same affect when the supply voltage is below approximately 3.5 V or the junction temperature exceeds 175°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

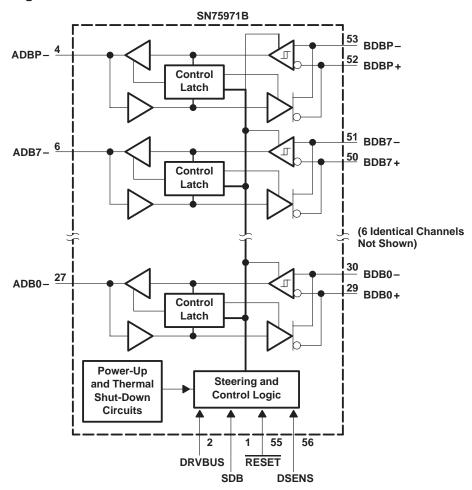
description (continued)

The SCSI, differential, converter-data chip operates in two modes depending on the state of the DRVBUS input. With DRVBUS low, a bidirectional latch circuit sets the direction of data transfer. Each data bit has its own latch, and each bit's direction is independent of all other bits. When neither the single-ended nor the differential sides are asserted, the latch disables both A- and B-side output drivers. When the input to either side is asserted, the latch enables the opposite side's driver and sets data flow from the asserted input to the opposite side of the device. When the input deasserts, the latch maintains the direction until the receiver on the enabled driver detects a deassertion. The latch then returns to the initial state. No parity checking is done by this device; the parity signal passes through the device like other data signals do.

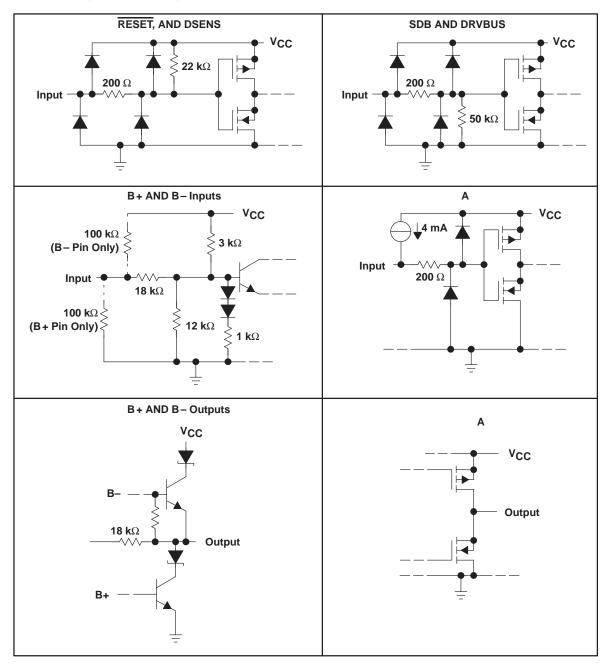
When DRVBUS is high, direction is determined by the SDB signal. However, a change in SDB does not always immediately change the direction. When DRVBUS first asserts, the direction indicated by SDB is latched and takes effect immediately. When SDB changes while DRVBUS is high, the drivers that were on immediately turn off. However, the other driver set does not turn on until the receivers sense a deasserted state on all nine data lines. This is done to prevent the active drivers from turning on until all other drivers are off and the terminators pull the lines to a deasserted state.

The single-ended SCSI bus interface consists of CMOS, bidirectional inputs and outputs. The drivers are rated to ±16 mA of output current. The receiver inputs are pulled high with approximately 4 mA to eliminate the need for external pullup resistors for the open-drain outputs of most single-ended SCSI controllers. The single-ended side of the device is not intended to drive the SCSI bus directly.

The differential SCSI bus interface consists of bipolar, bidirectional inputs and outputs that meet or exceed the requirements of EIA-485 and ISO 8482-1982/TIA TR30.2 referenced by American National Standard of Information Systems (ANSI) X3.131-1994 Small Computer System Interface-2 (SCSI-2) and SCSI-3 Fast-20 Parallel Interface (Fast-20) X3,277:1996.


The SN75971B is characterized for operation over the temperature range of 0°C to 70°C.

Terminal Functions


TERMI	NAL	1/0	DECCRIPTION
NAME	NO.	1/0	DESCRIPTION
ADBn-, where $n = \{0,1,2,3,4,5,6,7,P\}$	4, 6, 8, 10, 19, 21, 23, 25, 27	I/O, Single-ended SCSI voltage levels, Strong pullup	Bidirectional I/O for data and parity bits to and from the single-ended SCSI controller. As outputs, these terminals can source or sink 16 mA. As inputs, they are pulled up with about 4-mA to eliminate external resistors.
BDBn+, where n = {0,1,2,3,4,5,6,7,P}	29, 31, 33, 35, 37, 46, 48, 50, 52	I/O, RS-485, Weak pulldown	Bidirectional I/O for data and parity to and from the differential SCSI bus.
BDBn-, where n = {0,1,2,3,4,5,6,7,P}	30, 32, 34, 36, 38,47, 49, 51, 53	I/O, RS-485, Weak pulldown	Bidirectional I/O for the complement of data and parity to and from the differential SCSI bus.
DRVBUS	2	Input, TTL levels, Weak pulldown	A high-level logic signal from the control transceiver enables either the single-ended or differential drivers as directed by SDB.
DSENS	56	Input, TTL levels, Weak pullup	A low-level input initializes the internal latches and disables all drivers.
RESET	55	Input, TTL levels, Weak pullup	A low-level input initializes the internal latches and disables all drivers.
SDB	1	Input, TTL levels, Weak pulldown	A high-level logic signal from the control transceiver sends data from the differential bus to the single-ended bus. A low-level signal reverses the flow.

functional block diagram

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} (see Not	e 1)	0.3 V to 7 V
Differential bus voltage range (B side	e)	–10 V to 15 V
Single-ended bus voltage range (A s	side and control inputs)	0.3 V to 7 V
Continuous total power dissipation (s	see Note 2) Internally	Limited (see Dissipation Rating Table)
Electrostatic discharge (see Note 3):	: Class 2 A (all pins)	4 kV
	Class 2 B (all pins)	400 V
	Class 3 A (B-side and GND)	12 kV
	Class 3 B (B-side and GND)	400 V
Operating free-air temperature range	e, T _A	0°C to 70°C
		65°C to 150°C
Lead temperature 1,6 mm (1/16 inch	n) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to GND.

- 2. The maximum operating junction temperature is internally limited. Use the dissipation rating table to operate below this temperature.
- 3. This absolute maximum rating is tested in accordance with MIL-STD-883C, Method 3015.7.

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR [‡] ABOVE T _A = 25°C	T _A = 70°C POWER RATING
DGG	3333 mW	26.7 mW/°C	2133 mW
DL	3709 mW	29.7 mW/°C	2374 mW

[‡] This is the inverse of the traditional junction-to-case thermal resistance ($R_{\theta JA}$) for High-K (per JEDEC) PCB installations.

recommended operating conditions

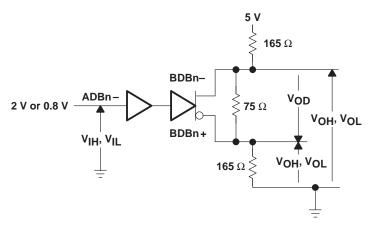
		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}				5.25	V
High-level input voltage, VIH	A side and control	2			V
Low-level input voltage, V _{IL}	A side and control			0.8	V
Voltage at any bus terminal (separately or common-mode), VO or VI	B side			12 -7	V
High-level output current, IOH	A side			-16	mA
Low-level output current, I _{OL}	A side			16	mA
Operating case temperature, T _C		0		125	°C
Operating free-air temperature, T _A	_	0		70	°C

SN75971B SCSI DIFFERENTIAL CONVERTER-DATA

SLLS322A - NOVEMBER 1999 - REVISED JANUARY 2000

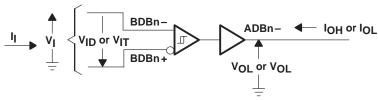
electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS			TYP [†]	MAX	UNIT
V _{OD(H)}	Driver high-level differenti	al output voltage	See Figure 1			-2.2		V
V _{OD(L)}	Driver low-level differentia	l output voltage	See Figure 1		1	1.8		V
\/a++	High-level output	A side	$V_{ID} = -200 \text{ mV},$	$I_{OH} = -16 \text{ mA}$	2.5	4.2		V
VOH	voltage	B side	I _{OH} = -60 mA			3.4		V
\/a:	Low-level output voltage	A side	V _{ID} = 200 mV,	I _{OL} = 16 mA		0.4	0.8	V
VOL	Low-level output voltage	B side	I _{OL} = 60 mA			1.6		V
V _{IT+}	Receiver positive-going differential input threshold voltage		I _{OH} = -16 mA	See Figure 2			0.2	V
V _{IT} —	Receiver negative-going differential input threshold voltage	B side	I _{OL} = 16 mA	See Figure 2	-0.2§			V
V _{hys}	Receiver input hysteresis voltage (V _{IT+} - V _{IT-})				35	45		mV
			V _I = 12 V, Other input at 0 V	$V_{CC} = 5 V$		0.6	1	mA
ļ	Puo input ourrant	B or B	v = 12 v, Other input at 0 v	V _{CC} = 0		0.7	1	mA
†į	Bus input current		$V_I = -7 \text{ V}$, Other input at 0 V	V _{CC} = 5 V		-0.5	-0.8	mA
			$V_1 = -7$ V, Other input at 0 V	VCC = 0		-0.4 -0.8		IIIA
		A side		-2	-5	-8	mA	
lН	IH High-level input current RESET		V _{IH} = 2 V		-70	-100	μА	
		SDB, DRVBUS					25	μΛ
		A side				-6	-9	mA
կլ	Low-level input current	RESET, DSENS	V _{IL} = 0.8 V			-66	-100	μА
		SDB, DRVBUS					±30	μΑ
los	Short-circuit output current	B side	V _O = 5 V and 0				±250	mA
	Lligh impedance state	A side			-2	-5	-8	
loz	High-impedance-state output current	7 oldo				-6	-9	
		B side				See I _I		
		Disabled	RESET at 0.8 V, Others open			38	46	
ICC	Supply current	B to A Enabled	SDB and DRVBUS at 2 V, All other inputs open,	V _{ID} = −1 V, No load		39	50	mA
		A to B Enabled	SDB at 0.8 V, All other inputs open, DRVBUS at 2 V, No load			32	66	
CO	Output capacitance		$V_I = 0.6 \sin(2\pi \times 10^6 t) + 1.5 V$	BDBn to GND		18	21	pF
C _{pd}	Power dissipation capacita	ance‡	B to A,	One channel		40		pF
Фра	1 Ower dissipation capacit	апост	A to B,	One channel		100		pF


[†] All typical values are at V_{CC} = 5 V, T_A = 25°C.
‡ C_{pd} determines the no-load dynamic current consumption, I_S = C_{pd} × V_{CC} × f + I_{CC}.
§ The algebraic convention with the least positive (more negative) limit is designated minimum, is used in this data sheet for the differential input voltage only.

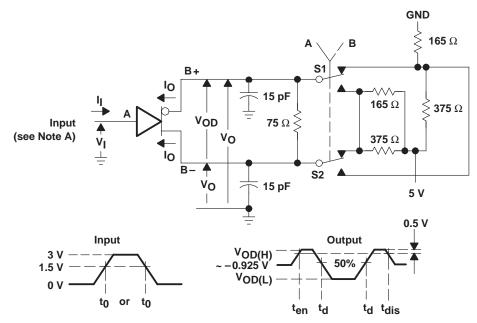
switching characteristics over recommended of operating conditions (unless otherwise noted)

PARAMETER		TEST CONDITIONS				MAX	UNIT		
	SN75971B1	See Figures	3 and 4	3	14				
Delay time, A to B, high- to low-		$V_{CC} = 5 V$	T _A = 25°C,	See Figures 3 and 4	4	12			
		$V_{CC} = 5 V$	$T_A = 70^{\circ}C$,	See Figures 3 and 4	4.9	12.9			
level or low- to high-level output		See Figures	3 and 4		5	12	ns		
	SN75971B2	$V_{CC} = 5 V$,	c = 5 V, T _A = 25°C, See Figures 3 and 4						
		$V_{CC} = 5 V$	$T_A = 70^{\circ}C$,	See Figures 3 and 4	6.9	10.9			
		See Figures	5 and 6		5.4	18.1			
	SN75971B1	$V_{CC} = 5 V$,	$T_A = 25^{\circ}C$,	See Figures 5 and 6	6.5	15.4			
Delay time, B to A, high- to low- level or low- to high-level output		$V_{CC} = 5 V$,	T _A = 70°C,	See Figures 5 and 6	7.2	16.1			
	SN75971B2	See Figures	7.7	15	ns				
		V _C C = 5 V,	T _A = 25°C,	See Figures 5 and 6	8.7	13.2			
		V _C C = 5 V,	T _A = 70°C,	See Figures 5 and 6	9.4	13.9			
	CNIZE074D4	A to B	See Figures 5 and 6			8			
Skow now to now!	211/29/101	B to A	See Figures		9	ns			
Skew, part-to-part	CNIZEOZADO	A to B	See Figures	5 and 6		4	ns		
level or low- to high-level output (pp) Skew, part-to-part† (p) Pulse skew‡	SN/59/1B2	B to A	See Figures	5 and 6		5			
Pulse skew [‡]						4	ns		
Disable time, A to B		See Figures	3 and 4			200	ns		
Disable time, B to A		See Figures 5 and 6			35	ns			
Enable time, A to B		See Figures 3 and 4				65	ns		
Enable time, B to A		See Figures 5 and 6				65	ns		
Enable time, receive-to-transmit		See Figure 7			142	ns			
	Delay time, A to B, high- to low-level or low- to high-level output Delay time, B to A, high- to low-level or low- to high-level output Skew, part-to-part† Pulse skew‡ Disable time, A to B Disable time, B to A Enable time, B to A	Delay time, A to B, high- to low-level or low- to high-level output SN75971B1 SN75971B2 SN75971B1 Delay time, B to A, high- to low-level or low- to high-level output SN75971B2 SN75971B1 SN75971B2 SN75971B1 SN75971B2 Pulse skew‡ Disable time, A to B Disable time, B to A Enable time, B to A Enable time, B to A	Delay time, A to B, high- to low-level or low- to high-level output $SN75971B1 = \frac{V_{CC} = 5 \text{ V}}{V_{CC} = 5 \text{ V}},$ $V_{CC} = 5 \text{ V},$ $V_{$	Delay time, A to B, high- to low-level or low- to high-level output $SN75971B1 = SN75971B1 = SN75971B1 = SN75971B1 = SN75971B2 = SN75971B1 = SN75971B2 = SN75971B1 = SN75971B1 = SN75971B1 = SN75971B1 = SN75971B1 = SN75971B2 = SN75971B$	$ \begin{array}{c} See \ Figures \ 3 \ and \ 4 \\ \hline \ V_{CC} = 5 \ V, T_A = 25 ^{\circ}C, See \ Figures \ 3 \ and \ 4 \\ \hline \ V_{CC} = 5 \ V, T_A = 70 ^{\circ}C, See \ Figures \ 3 \ and \ 4 \\ \hline \ V_{CC} = 5 \ V, T_A = 70 ^{\circ}C, See \ Figures \ 3 \ and \ 4 \\ \hline \ V_{CC} = 5 \ V, T_A = 70 ^{\circ}C, See \ Figures \ 3 \ and \ 4 \\ \hline \ V_{CC} = 5 \ V, T_A = 25 ^{\circ}C, See \ Figures \ 3 \ and \ 4 \\ \hline \ V_{CC} = 5 \ V, T_A = 25 ^{\circ}C, See \ Figures \ 3 \ and \ 4 \\ \hline \ V_{CC} = 5 \ V, T_A = 70 ^{\circ}C, See \ Figures \ 3 \ and \ 4 \\ \hline \ V_{CC} = 5 \ V, T_A = 70 ^{\circ}C, See \ Figures \ 3 \ and \ 4 \\ \hline \ V_{CC} = 5 \ V, T_A = 70 ^{\circ}C, See \ Figures \ 5 \ and \ 6 \\ \hline \ V_{CC} = 5 \ V, T_A = 25 ^{\circ}C, See \ Figures \ 5 \ and \ 6 \\ \hline \ V_{CC} = 5 \ V, T_A = 25 ^{\circ}C, See \ Figures \ 5 \ and \ 6 \\ \hline \ V_{CC} = 5 \ V, T_A = 70 ^{\circ}C, See \ Figures \ 5 \ and \ 6 \\ \hline \ V_{CC} = 5 \ V, T_A = 70 ^{\circ}C, See \ Figures \ 5 \ and \ 6 \\ \hline \ V_{CC} = 5 \ V, T_A = 25 ^{\circ}C, See \ Figures \ 5 \ and \ 6 \\ \hline \ V_{CC} = 5 \ V, T_A = 70 ^{\circ}C, See \ Figures \ 5 \ and \ 6 \\ \hline \ V_{CC} = 5 \ V, T_A = 70 ^{\circ}C, See \ Figures \ 5 \ and \ 6 \\ \hline \ \ V_{CC} = 5 \ V, T_A = 70 ^{\circ}C, See \ Figures \ 5 \ and \ 6 \\ \hline \ \ \ V_{CC} = 5 \ V, T_A = 70 ^{\circ}C, See \ Figures \ 5 \ and \ 6 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				


[†] Part-to-part skew is the magnitude of the difference in propagation delay times between any two devices when both operate with the same supply voltages, the same temperature, and the same loads.

[‡] Pulse skew is the difference between the high-to-low and low-to-high propagation delay times of any single channel.

- NOTES: A. Resistance values are in ohms with a tolerance of \pm 5%.
 - B. All input voltage levels are held to within 0.01 V.
 - C. The logical function is set with SDB at 0.8 V, DRVBUS at 3.5 V, and all others left open.


Figure 1. Differential Driver $\rm V_{OD}, \, V_{OH}, \, and \, V_{OL}$ Test Circuit

- NOTES: A. Resistance values are in ohms with a tolerance of \pm 5%.
 - B. All input voltage levels are held to within 0.01 V.
 - C. The logical function is set with SDB and DRVBUS at 3.5 V, and all others left open.

Figure 2. Single-Ended Driver V_{OH} , V_{OL} , V_{IT+} , and V_{IT-} Test Circuit

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 45% < duty cycle < 50%, $t_{f} \leq$ 1 ns, $t_{f} \leq$ 1

- B. C_L includes probe and jig capacitance.
- C. Resistance values are in ohms with a tolerance of \pm 5%.
- D. All input voltage levels are held to within 0.01 V.

Figure 3. A to B Propagation Delay Time Test Circuit

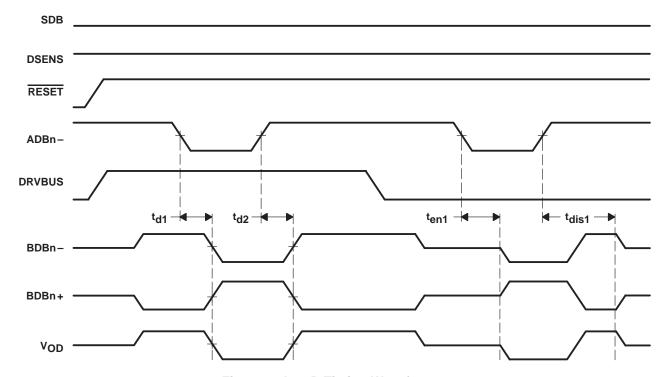
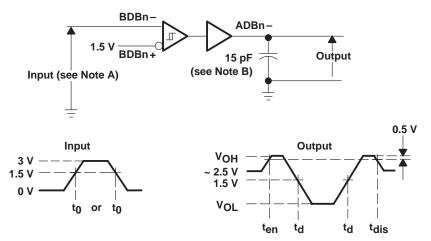



Figure 4. A to B Timing Waveforms

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 45% < duty cycle < 50%, $t_f \leq$ 1 ns, $t_f \leq$ 1 n
 - B. C_L includes probe and jig capacitance.
 - C. Resistance values are in ohms with a tolerance of \pm 5%.
 - D. All input voltage levels are held to within 0.01 V.

Figure 5. B to A Propagation Delay Time Test Circuit

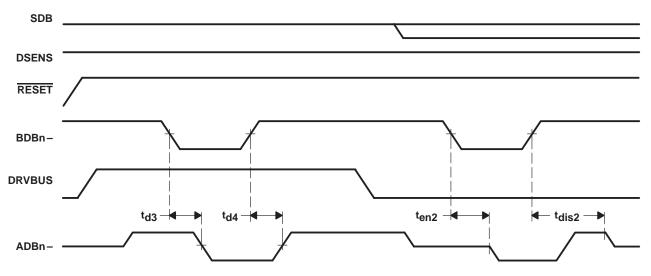


Figure 6. B to A Timing Waveforms

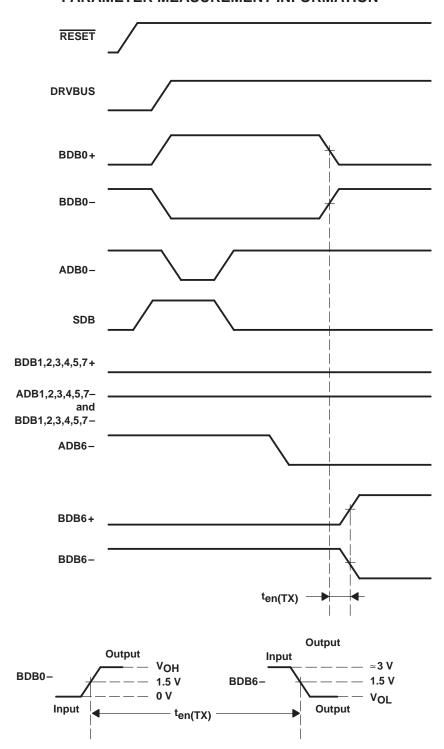
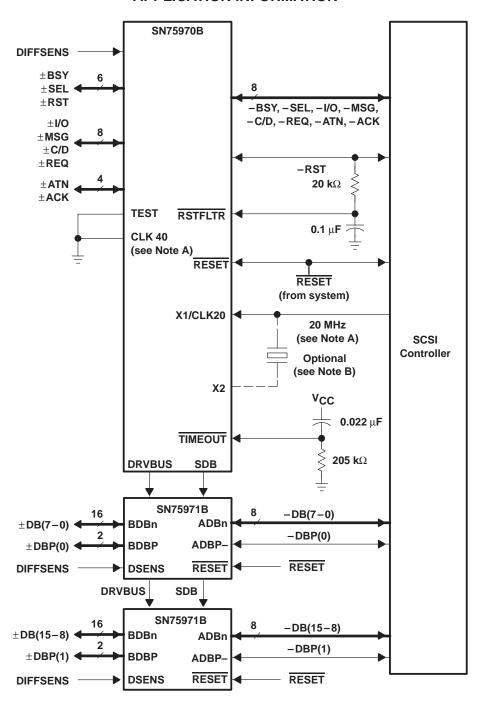



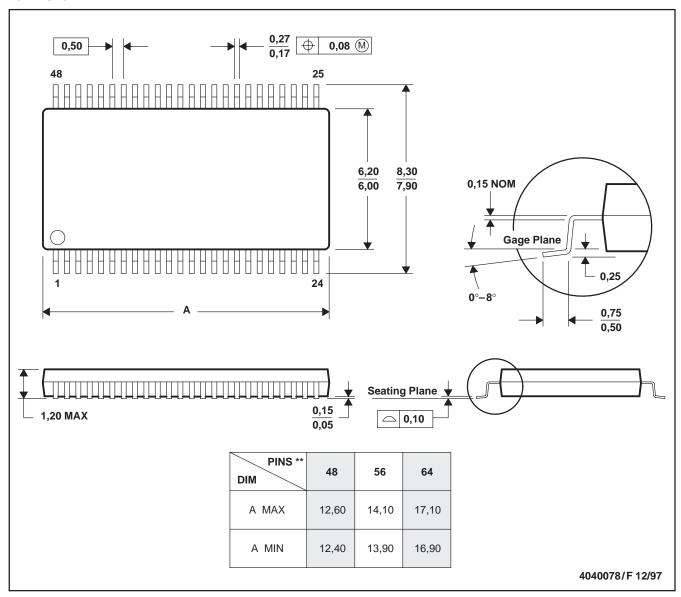
Figure 7. Receive-to-Transmit ($t_{en(TX)}$) Timing Waveforms

APPLICATION INFORMATION

NOTES: A. When using the 40-MHz clock input, X1 must be connected to V_{CC}.

B. The oscillator cell of the SN75970B is for a series-resonant crystal and requires approximately 10 pF (including fixture capacitance) from X1 and X2 to ground in order to function.

Figure 8. Typical Application of the SN75970B and SN75971B



MECHANICAL INFORMATION

DGG (R-PDSO-G**)

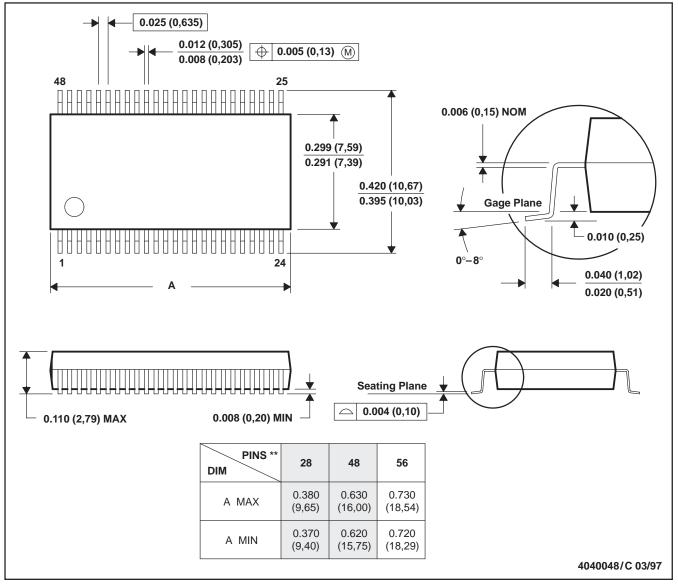
PLASTIC SMALL-OUTLINE PACKAGE

48 PIN SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.


D. Falls within JEDEC MO-153

MECHANICAL INFORMATION

DL (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MO-118

.com 30-Mar-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN75971B1DGG	ACTIVE	TSSOP	DGG	56	35	TBD	CU NIPDAU	Level-2-220C-1 YEAR
SN75971B1DGGR	ACTIVE	TSSOP	DGG	56	2000	TBD	CU NIPDAU	Level-2-220C-1 YEAR
SN75971B1DL	ACTIVE	SSOP	DL	56	20	TBD	CU NIPDAU	Level-2-220C-1 YEAR
SN75971B1DLR	ACTIVE	SSOP	DL	56	1000	TBD	CU NIPDAU	Level-2-220C-1 YEAR
SN75971B2DGG	ACTIVE	TSSOP	DGG	56	35	TBD	CU NIPDAU	Level-2-220C-1 YEAR
SN75971B2DGGR	ACTIVE	TSSOP	DGG	56	2000	TBD	CU NIPDAU	Level-2-220C-1 YEAR
SN75971B2DL	ACTIVE	SSOP	DL	56	20	TBD	CU NIPDAU	Level-2-220C-1 YEAR
SN75971B2DLR	ACTIVE	SSOP	DL	56	1000	TBD	CU NIPDAU	Level-2-220C-1 YEAR

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Э
d
rol
work
d rol

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated