
EMD12 / UMD12N

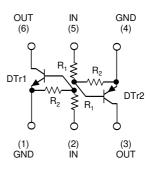
NPN + PNP Complex Digital Transistors (Bias Resistor Built-in Transistors)

<For DTr1(NPN)>

Parameter	Value
V _{CC}	50V
I _{C(MAX.)}	100mA
R ₁	47kΩ
R_2	47kΩ

Outline

Datasheet


<For DTr2(PNP)>

Parameter	Value
V _{CC}	-50V
I _{C(MAX.)}	-100mA
R ₁	47kΩ
R ₂	47kΩ

Features

- 1) Both the DTC144E chip and DTA144E chip in one package.
- 2) Built-in bias resistors enable the configuration of an inverter circuit without connecting external input resistors (see inner circuit).
- 3) The bias resistors consist of thin-film resistors with complete isolation to allow negative biasing of the input. They also have the advantage of completely eliminating parasitic effects.
- Only the on/off conditions need to be set for operation, making the circuit design easy.
- 5) Lead Free/RoHS Compliant.

•Inner circuit

Application

Inverter circuit, Interface circuit, Driver circuit

Packaging specifications

Part No.	Package	Package size (mm)	Taping code	Reel size (mm)	Tape width (mm)	Basic ordering unit (pcs)	Marking
EMD12	EMT6	1616	T2R	180	8	8,000	D12
UMD12N	UMT6	2021	TR	180	8	3,000	D12

● **Absolute maximum ratings** (Ta = 25°C)

Parameter	Symbol	DTr1(NPN)	DTr2(PNP)	Unit
Supply voltage	V _{cc}	50	–50	V
Input voltage	V_{IN}	-10 to +40	-40 to +10	V
Output current	I _O	30	-30	mA
Collector current	I _{C(MAX.)} *1	100	-100	mA
Power dissipation	P _D *2	150 (Total)*3		mW
Junction temperature	T _j	150		°C
Range of storage temperature	T _{stg}	-55 to +150		°C

●Electrical characteristics(Ta = 25°C) <For DTr1(NPN)>

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Input voltage	$V_{I(off)}$	$V_{CC} = 5V, I_{O} = 100 \mu A$	1	1	0.5	V
input voitage	$V_{I(on)}$	$V_0 = 0.3V, I_0 = 2mA$	3.0	-	-	V
Output voltage	$V_{O(on)}$	$I_{O}/I_{I} = 10mA/0.5mA$	-	0.1	0.3	V
Input current	I _I	$V_1 = 5V$	-	-	0.18	mA
Output current	$I_{O(off)}$	$V_{CC} = 50V, V_I = 0V$	-	-	0.5	μΑ
DC current gain	G _I	$V_O = 5V$, $I_O = 5mA$	68	-	-	-
Input resistance	R_1	-	32.9	47	61.1	kΩ
Resistance ratio	R_2/R_1	-	0.8	1	1.2	-
Transition frequency	f _T *1	$V_{CE} = 10V, I_{E} = -5mA$ f = 100MHz	1	250		MHz

●Electrical characteristics(Ta = 25°C) <For DTr2(PNP)>

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
leaved and the me	$V_{I(off)}$	$V_{CC} = -5V, I_{O} = -100 \mu A$	-	-	-0.5	V
Input voltage	$V_{I(on)}$	$V_O = -0.3V, I_O = -2mA$	-3.0	-	-	V
Output voltage	$V_{O(on)}$	$I_{O}/I_{I} = -10mA/-0.5mA$	1	-0.1	-0.3	V
Input current	I _I	$V_I = -5V$	ı	-	-0.18	mA
Output current	I _{O(off)}	$V_{CC} = -50V, V_I = 0V$	ı	1	-0.5	μΑ
DC current gain	G _I	$V_{O} = -5V, I_{O} = -5mA$	68	ı	-	-
Input resistance	R_1	-	32.9	47	61.1	kΩ
Resistance ratio	R ₂ /R ₁	-	0.8	1	1.2	-
Transition frequency	f _T *1	$V_{CE} = -10V, I_{E} = 5mA$ f = 100MHz	-	250	-	MHz

^{*1} Characteristics of built-in transistor

^{*2} Each terminal mounted on a reference footprint

^{*3 120}mW per element must not be exceeded.

●Electrical characteristic curves (Ta = 25°C) <For DTr1(NPN)>

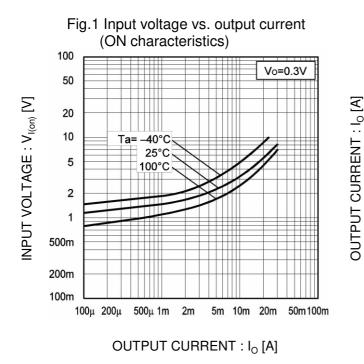
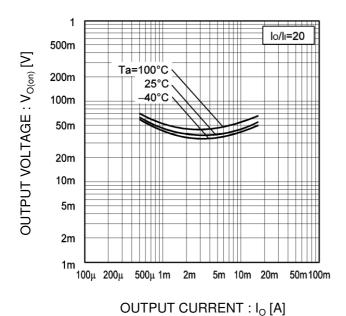
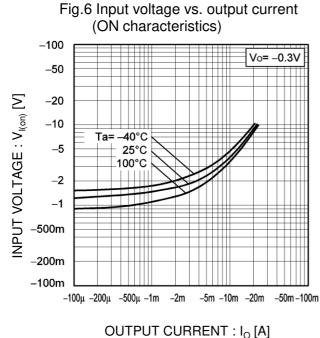


Fig.2 Output current vs. input voltage (OFF characteristics) 10m Vcc=5V 5m Ta=100°C 2m 25°C 1m 40°C 500μ 200μ 100μ 50μ 20μ 10μ 5μ 2μ 1μ 0 0.5 1.0 1.5 2.0 2.5 3.0 INPUT VOLTAGE : $V_{l(off)}[V]$


Fig.3 Output current vs. output voltage $I_1 =$ 30 Ta=25ºC 120μΑ 110μΑ OUTPUT CURRENT : Io [mA] 100μΑ 90μΑ 20 80μΑ 70μΑ 60μΑ 10 50μΑ 40μΑ 30μΑ 0 5 0 10 OUTPUT VOLTAGE: Vo [V]

1k V_O= 5V 500 Ta= 100°C CURRENT GAIN: G 200 25°C 40°C 100 50 20 10 5 2 100μ 200μ 500μ 1m 2m 5m 10m 20m 50m 100m OUTPUT CURRENT: Io [A]


Fig.4 DC current gain vs. output current

●Electrical characteristic curves (Ta = 25°C) <For DTr1(NPN)>

Fig.5 Output voltage vs. output current

●Electrical characteristic curves (Ta = 25°C) <For DTr2(PNP)>

(OFF characteristics) -10m Vcc= -5V -5m –2m Ta=100°C OUTPUT CURRENT : Io [A] 25°C –1m 40°C –500μ -200μ -100μ -50_µ **–20**μ –10µ -5μ **–2**μ -1μ -0.5-1.0-1.5-2.0 -2.5 -3.0

INPUT VOLTAGE : $V_{I(off)}[V]$

Fig.7 Output current vs. input voltage

●Electrical characteristic curves (Ta = 25°C) <For DTr2(PNP)>

Fig.8 Output current vs. output voltage

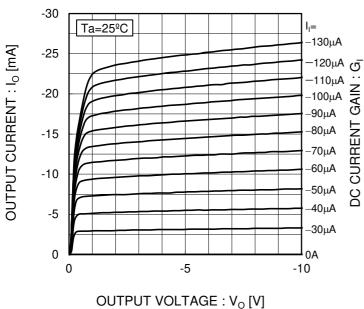
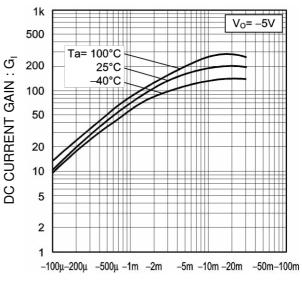
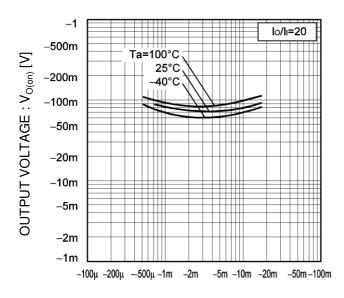




Fig.9 DC current gain vs. output current

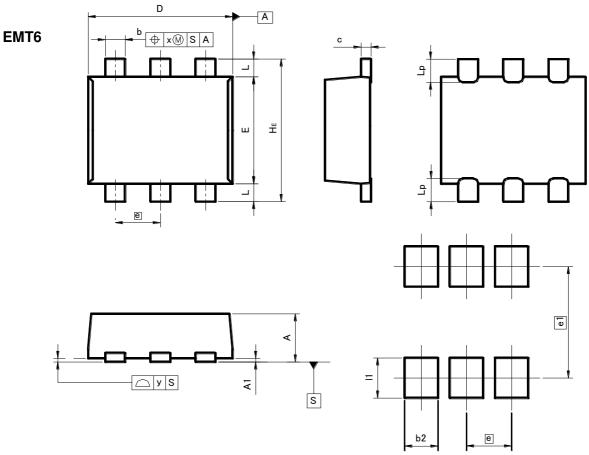
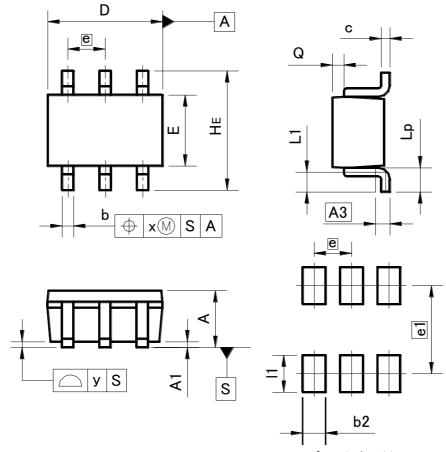

OUTPUT CURRENT : Io [A]

Fig.10 Output voltage vs. output current

OUTPUT CURRENT : IO [A]

●Dimensions (Unit : mm)

Pattern of terminal position areas [Not a recommended pattern of soldering pads]


DIM	MILIM	ETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	0.45	0.55	0.018	0.022
A1	0.00	0.10	0.000	0.004
b	0.17	0.27	0.007	0.011
С	0.08	0.18	0.003	0.007
D	1.50	1.70	0.059	0.067
Е	1.10	1.30	0.043	0.051
е	0.	50	0.020	
HE	1.50	1.70	0.059	0.067
L	0.10	0.30	0.004	0.012
Lp	_	0.35		0.014
х	_	0.10	_	0.004
у	_	0.10	_	0.004

DIM		MILIM	ETERS	INCHES		
		MIN	MAX	MIN	MAX	
	b2	_	0.37	_	0.015	
Ī	e1	1.25		0.0	49	
	l1	ı	0.45	ı	0.018	

Dimension in mm / inches

●Dimensions (Unit:mm)

UMT6

Pattern of terminal position areas [Not a recommended pattern of soldering pads]

DIM	MILIM	ETERS	INC	HES
DIIVI	MIN	MAX	MIN	MAX
Α	0.80	1.00	0.031	0.039
A1	0.00	0.10	0.000	0.004
A3	0.3	25	0.0	10
b	0.15	0.30	0.006	0.012
С	0.10	0.20	0.004	0.008
D	1.90	2.10	0.075	0.083
E	1.15	1.35	0.045	0.053
е	0.0	65	0.026	
HE	2.00	2.20	0.079	0.087
L1	0.20	0.50	0.008	0.020
Lp	0.25	0.55	0.010	0.022
Q	0.10	0.30	0.004	0.012
х	_	0.10		0.004
У	_	0.10		0.004

DIM	MILIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
b2	_	- 0.40		0.016	
e1	1.55		0.0	61	
I1	-	0.65	_	0.026	

Dimension in mm / inches

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 7) The Products specified in this document are not designed to be radiation tolerant.
- 8) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 9) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 11) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 12) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 13) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/