

1-Mb (128K x 8) Static RAM

Features

Very high speed: 55 and 70 ns
Wide voltage range: 2.2V to 3.6V
Pin compatible with CY62128V

· Ultra-low active power

Typical active current: 0.85 mA @ f = 1 MHz
 Typical active current: 5 mA @ f = f_{MAX}

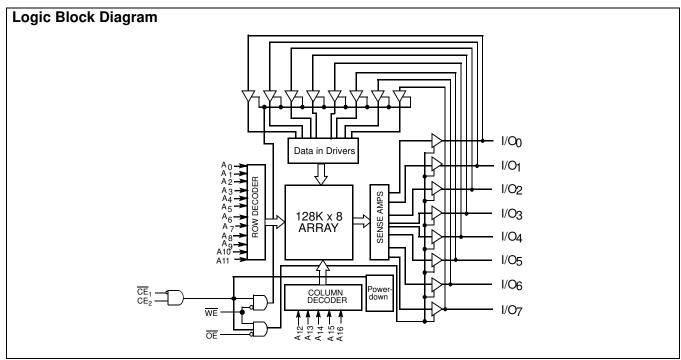
· Ultra-low standby power

Easy memory expansion with CE₁, CE₂, and OE features

Automatic power-down when deselected

 Available in Pb-free and non Pb-free 32-lead SOIC, 32-lead TSOP and 32-lead Small TSOP, non Pb-free 32-lead Reverse TSOP packages

Functional Description[1]

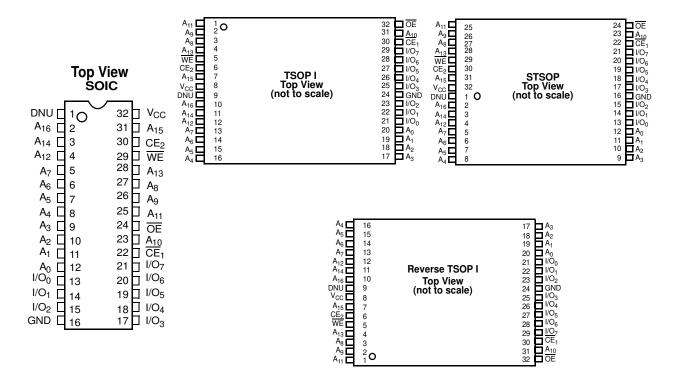

The CY62128DV30 is a high-performance CMOS static RAM organized as 128K words by 8 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device

also has an automatic power-down feature that significantly reduces power consumption by 90% when addresses are not toggling. The device can be put into standby mode reducing power consumption by more than 99% when deselected Chip Enable 1 ($\overline{\text{CE}}_1$) HIGH or Chip Enable 2 ($\overline{\text{CE}}_2$) LOW. The input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when: deselected Chip Enable 1 ($\overline{\text{CE}}_1$) HIGH or Chip Enable 2 ($\overline{\text{CE}}_2$) LOW, outputs are disabled ($\overline{\text{OE}}_1$) LOW and Chip Enable 2 ($\overline{\text{CE}}_2$) HIGH and Write Enable ($\overline{\text{WE}}$) LOW).

Writing to the device is accomplished by taking Chip Enable 1 (\overline{CE}_1) LOW with Chip Enable 2 (CE_2) HIGH and Write Enable (WE) LOW. Data on the eight I/O pins is then written into the location specified on the Address pin (A_0) through A_{16} .

Reading from the device is accomplished by taking Chip Enable 1 (CE_1) LOW with Chip Enable 2 (CE_2) HIGH and Output Enable (OE) LOW while forcing the Write Enable (OE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected ($\overline{\text{CE}}_1$ HIGH or CE_2 LOW), the outputs are disabled (OE HIGH) or during a write operation ($\overline{\text{CE}}_1$ LOW, CE_2 HIGH), and $\overline{\text{WE}}$ LOW).



Note:

1. For best-practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Pin Configurations^[2]

Product Portfolio

					Power Dissipation					
					Operating, I _{CC} (mA)					
	Vo	_{CC} Range ((V)	Speed	f = 1 MHz f = f _{MAX}		Standby, I _{SB2} (μA)			
Product	Min.	Тур.	Max.	(ns)	Typ. ^[4]	Max.	Typ. ^[4]	Max.	Typ. ^[4]	Max.
CY62128DV30L	2.2	3.0	3.6	55/70	0.85	1.5	5	10	1.5	5
CY62128DV30LL				55/70	0.85	1.5	5	10	1.5	4

Notes:

- 2. NC pins are not connected to the die.
- No pins are not connected to the sist.
 DNU pins have to be left floating or tied to Vss to ensure proper application.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25°C.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......55°C to +125°C

Supply Voltage to Ground

Potential-0.3V to 3.9V

DC Voltage Applied to Outputs

in High-Z State^[5].....-0.3V to V_{CC} + 0.3V

DC Input Voltage ^[5]	$-0.3V$ to $V_{CC} + 0.3V$
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

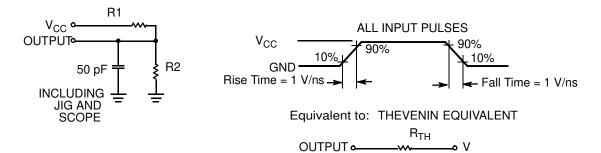
Range	Ambient Temperature (T _A)	V _{CC} ^[6]
Industrial	–40°C to +85°C	2.2V to 3.6V

DC Electrical Characteristics (Over the Operating Range)

				CY6	2128DV30-	55/70		
Parameter	Description	Test Co	Test Conditions		Min.	Typ . ^[4]	Max.	Unit
V _{OH}	Output HIGH Voltage	$2.2 \le V_{CC} \le 2.7$	$I_{OH} = -0.1 \text{ m}.$	A	2.0			V
		$2.7 \le V_{CC} \le 3.6$	$I_{OH} = -1.0 \text{ m}$	A	2.4			
V _{OL}	Output LOW Voltage	$2.2 \le V_{CC} \le 2.7$	$I_{OL} = 0.1 \text{ mA}$				0.4	V
		$2.7 \le V_{CC} \le 3.6$	I _{OL} = 2.1 mA				0.4	
V _{IH}	Input HIGH Voltage	$2.2 \le V_{CC} \le 2.7$	•		1.8		$V_{CC} + 0.3$	V
		$2.7 \le V_{CC} \le 3.6$			2.2		$V_{CC} + 0.3$	
V _{IL}	Input LOW Voltage	$2.2 \le V_{CC} \le 2.7$	2.2 ≤ V _{CC} ≤ 2.7		-0.3		0.6	V
		2.7 ≤ V _{CC} ≤ 3.6	$2.7 \le V_{CC} \le 3.6$		-0.3		0.8	
I _{IX}	Input Leakage Current	$GND \leq V_{I} \leq V_{CC}$			-1		+1	μΑ
l _{oz}	Output Leakage Current	$GND \leq V_O \leq V_{CC}, C$	output Disabled	ł	-1		+1	μΑ
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 3.6V,$			5	10	mA
	Current	f = 1 MHz	I _{OUT} = 0mA, CMOS level			0.85	1.5	
I _{SB1}	Automatic CE Power-down	$\overline{CE}_1 \ge V_{CC} - 0.2V$, (L		1.5	5	μΑ
	Current – CMOS Inputs	$V_{IN} \ge V_{CC} - 0.2V$, V $f = f_{MAX} (Address ar)$ f = 0 (OE, WE,)		LL		1.5	4	
I _{SB2}	Automatic CE Power-down	$\overline{CE}_1 \ge V_{CC} - 0.2V$, ($CE_2 \le 0.2V$,	L		1.5	5	μΑ
	Current – CMOS Inputs	$V_{IN} \ge V_{CC} - 0.2V \text{ or } f = 0, V_{CC} = 3.6V$	$V_{IN} \leq 0.2V$	LL		1.5	4	

Capacitance^[7]

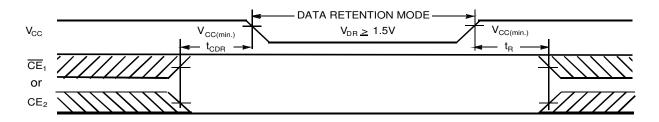
Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25$ °C, f = 1 MHz	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF


Thermal Resistance^[7]

Parameter	Description	Test Conditions	SOIC	TSOP I	RTSOP	STSOP	Unit
θ_{JA}	(Junction to Ambient)	Still Air, soldered on a 3 x 4.5 inch, two-layer printed circuit	69	93	93	65	°C/W
$\theta_{\sf JC}$	Thermal Resistance (Junction to Case)	board	34	17	17	15	°C/W

- 5. $V_{IL(min.)} = -2.0V$ for pulse durations less than 20 ns. $V_{IH(max.)} = V_{CC} + 0.75V$ for pulse durations less than 20 ns. 6. Full device operation requires linear ramp of V_{CC} from 0V to $V_{CC(min)}$ and V_{CC} must be stable at $V_{CC(min)}$ for 500 μ s. 7. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms^[8]



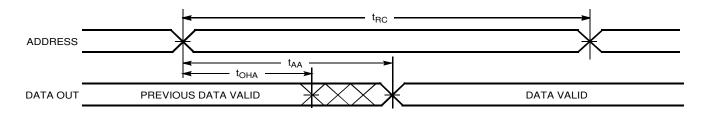
Parameters	2.5V (2.2V - 2.7V)	3.0V (2.7V - 3.6V)	Unit
R1	16600	1103	Ω
R2	15400	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics

Parameter	Description	Conditions		Min.	Typ. ^[4]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.5			V
I _{CCDR}	Data Retention Current	$V_{CC} = 1.5V, \overline{CE}_{1} \ge V_{CC} - 0.2V, CE_{2} \le 0.2V, V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$	L			4	μА
		$V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$	LL			3	
t _{CDR} ^[4]	Chip Deselect to Data Retention Time			0			ns
t _R [8]	Operation Recovery Time			100			μS

Data Retention Waveform

Note: 8. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)}$ > 100 $~\mu s$.



Switching Characteristics (Over the Operating Range)[9]

		CY62128	3DV30-55	CY62128		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle						
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE ₁ LOW or CE ₂ HIGH to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[10]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[10, 11]		20		25	ns
t _{LZCE}	CE ₁ LOW or CE ₂ HIGH to Low Z ^[10]	10		10		ns
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to High Z ^[10, 11]		20		25	ns
t _{PU}	CE ₁ LOW or CE ₂ HIGH to Power-up	0		0		ns
t _{PD}	CE ₁ HIGH or CE ₂ LOW to Power-down		55		70	ns
Write Cycle ^[12]						
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE ₁ LOW or CE ₂ HIGH to Write End	40		60		ns
t _{AW}	Address Set-up to Write End	40		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		50		ns
t _{SD}	Data Set-up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High Z ^[10, 11]		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[10]	10		10		ns

Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled)^[13, 14]

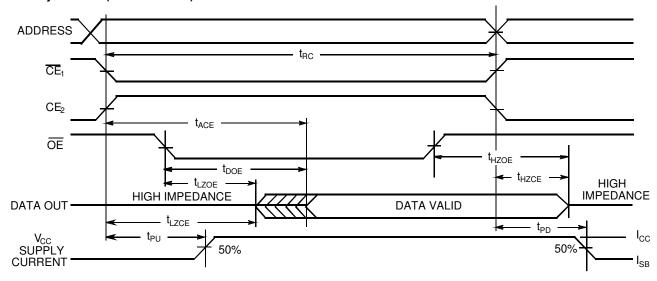
Notes:

- Notes:

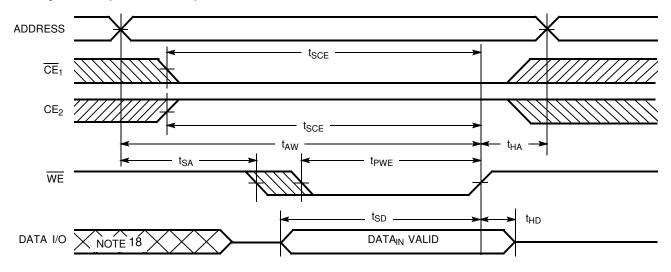
 9. Test conditions assume signal transition time of 1V/ns or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}.

 10. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZBE}, t_{HZDE} is less than t.

 11. t_{HZOE}, t_{HZCE}, t_{HZBE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter a high-impedance state.


 12. The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, and CE₂ = V_{IH}. All signals.

 13. <u>Device</u> is continuously selected. OE, CE₁ = V_{IL}, CE₂ = V_{IH}.



Switching Waveforms (continued)

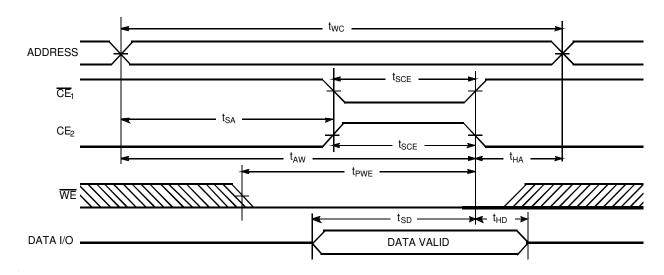
Read Cycle No. 2 (OE Controlled)[11, 14, 15]

Write Cycle No. 1 (WE Controlled)[12, 16, 17, 18]

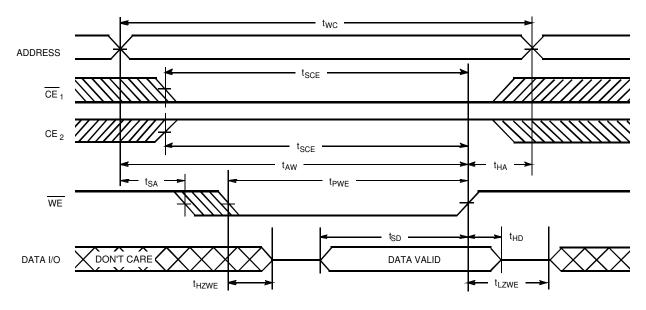
Notes:

15. Address valid prior to or coincident with \overline{CE}_1 transition LOW and CE_2 transition HIGH.

16. Data I/O is high-impedance if $\overline{OE} = V_{IH}$.


17. If \overline{CE}_1 goes HIGH or CE_2 goes LOW simultaneously with \overline{WE} HIGH, the output remains in a high-impedance state.

18. During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied.



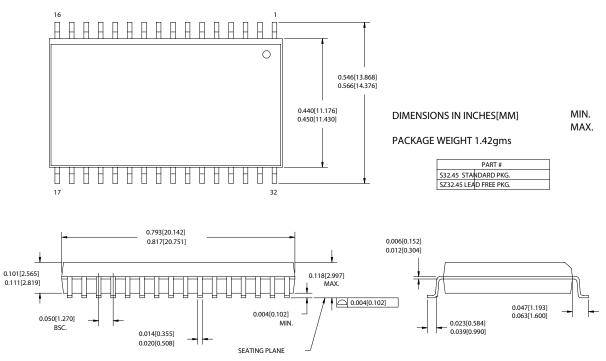
Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\text{CE}}_1$ or CE_2 Controlled)[12, 16, 17, 18]

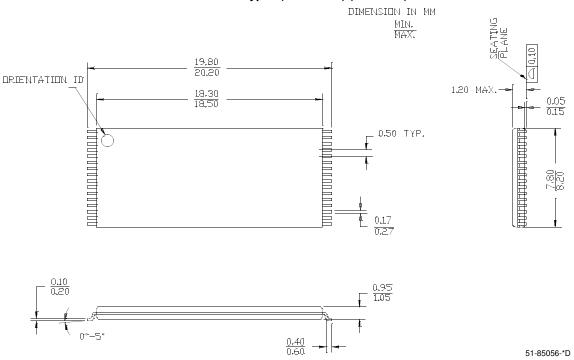
Write Cycle No. 3 (WE Controlled, OE LOW)[10, 16, 17]

Truth Table

CE ₁	CE ₂	WE	OE	I/O ₀ -I/O ₇	MOde	Power
Н	Х	Х	Х	High Z	Deselet/Power-down	Standby (I _{SB})
Х	L	Х	Х	High Z	Deselet/Power-down	Standby (I _{SB})
L	Н	Н	L	Data out	Read	Active (I _{CC})
L	Н	Н	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	L	Х	Data In	Write	Active (I _{CC})

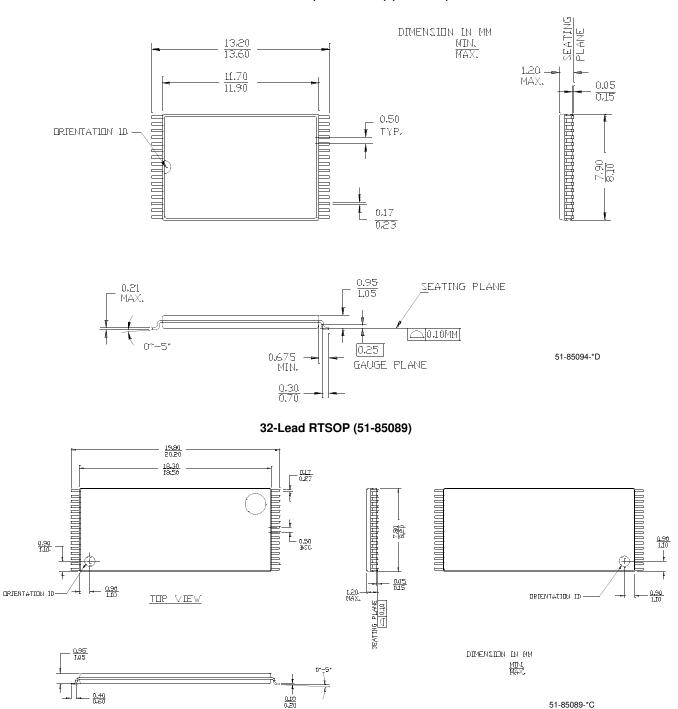

Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
55	CY62128DV30L-55SI	51-85081	32-lead SOIC	Industrial
	CY62128DV30LL-55SI	51-85081	32-lead SOIC	
	CY62128DV30LL-55SXI	51-85081	32-lead SOIC (Pb-Free)	
	CY62128DV30L-55ZI	51-85056	32-lead TSOP Type 1	
	CY62128DV30LL-55ZI	51-85056	32-lead TSOP Type 1	
	CY62128DV30LL-55ZXI	51-85056	32-lead TSOP Type 1 (Pb-Free)	
	CY62128DV30L-55ZAI	51-85094	32-lead Small TSOP	
	CY62128DV30LL-55ZAI	51-85094	32-lead Small TSOP	
	CY62128DV30LL-55ZAXI	51-85094	32-lead Small TSOP (Pb-Free)	
	CY62128DV30L-55ZRI	51-85089	32-lead Reverse TSOP	
	CY62128DV30LL-55ZRI	51-85089	32-lead Reverse TSOP	
	CY62128DV30LL-55ZRXI	51-85089	32-lead Reverse TSOP	
70	CY62128DV30L-70SI	51-85081	32-lead SOIC	
	CY62128DV30LL-70SI	51-85081	32-lead SOIC	
	CY62128DV30LL-70SXI	51-85081	32-lead SOIC (Pb-Free)	
	CY62128DV30L-70ZI	51-85056	32-lead TSOP Type 1	
	CY62128DV30LL-70ZI	51-85056	32-lead TSOP Type 1	
	CY62128DV30LL-70ZXI	51-85056	32-lead TSOP Type 1 (Pb-Free)	
	CY62128DV30L-70ZAI	51-85094	32-lead Small TSOP	
	CY62128DV30LL-70ZAI	51-85094	32-lead Small TSOP	
	CY62128DV30LL-70ZAXI	51-85094	32-lead Small TSOP (Pb-Free)	
	CY62128DV30L-70ZRI	51-85089	32-lead Reverse TSOP	
	CY62128DV30LL-70ZRI	51-85089	32-lead Reverse TSOP	


Package Diagrams

32-Lead (450-Mil) SOIC (51-85081)

51-85081-*B


32-Lead TSOP Type I (8 x 20 mm) (51-85056)

Package Diagrams (continued)

32-Lead STSOP (8 x 13.4 mm) (51-85094)

MoBL is a registered trademark, and MoBL2 and More Battery Life are trademarks, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

Document Title: CY62128DV30 1-Mb (128K x 8) Static RAM Document Number: 38-05231 Orig. of REV. ECN NO. Change **Issue Date Description of Change** 117691 08/27/02 JUI New Data Sheet **MPR** *A 127314 5/27/03 Changed from Advance Information to Preliminary Changed Isb2 to 5 µA (L), 4 µA (LL) Changed Iccdr to 4 µA (L), 3 µA (LL) Changed Cin from 6 pF to 8 pF *B 128342 07/23/03 JUI Changed from Preliminary to Final Add 70-ns speed, updated ordering information *C 129002 08/29/03 CDY Changed Icc 1 MHz typ from 0.5 mA to 0.85 mA *D 347394 See ECN PCI Added Lead-Free Packages in Ordering Information Table *E SYT 395936 See ECN Changed address of Cypress Semiconductor Corporation on Page# 1 from "3901 North First Street" to "198 Champion Court" Corrected \overline{CE}_1 and CE_2 waveforms on Write Cycle No.1 on Page# 6. Edited the Write Cycle No.1 switching waveform Data I/O to include Don't Care Condition on Page# 6 Updated the ordering information on Page #8 *F 428906 See ECN AJU Added Thermal Resistance numbers for RTSOP package Updated Ordering Information table by replacing Package Name column with Package Diagram **NXR** Updated the Block Diagram on page # 1 *G 464721 See ECN *Н 470383 See ECN **NXR** Changed pin# 1 of SOIC and STSOP I, pin # 9 of TSOP I and RTSOP I from NC to DNU and added footnote# 3