

Cree XBD Series

Leveraging Cree's latest silicon carbide technology and expertise, the XBD LED delivers up to 139 lumens and 136 lumens per watt in cool white (6000K) or up to 107 lumens and 105 lumens per watt in warm white (3000K), both at 350 mA and 85°C.

FEATURES

> 80-min CRI White and 70-min CRI Cool White

*Absolute Maximum Ratings (Note 1)

- > 1A Maximum Drive Current
- > Low Thermal Resistance: 6.5°C/W
- > Electrically Neutral Thermal Path

APPLICATIONS

- > Non-Directional
- > Directional
- > Downlight
- > Consumer Portable

Flux Characteristics (T _i =85°CWhite)				
COLOR TEMPERATURE	CCT (TYP.)(°K)*	MIN.FLUX (LM) @350MA	KIT USED	
Cool White	60006500	122	0F51	
Neutral White	47505000	107	LDE3	
Warm White	30003250	100	LBE7	

*See Cree Specifications

Absolute Maximum Hatings	s (NOTO 1)		
ITEMS	SYMBOL	RATING	UNIT
Forward Current (Note 2)	l _F	1000	mA
Forward Voltage (@350mA, 85°C)	V_{F}	3.5	V

Reverse Voltage V_{R} -5.0 -2.5 mV/°C Temperature Coefficient of Forward Voltage V_{TC} Operating Temperature at T_c Point (Note 2&3) 115 $^{\circ}C$ T_{OPR} ^{0}C Junction Temperature 150 T_{i} ESD Classification (HBM per MIL-STD-883D) Class 2

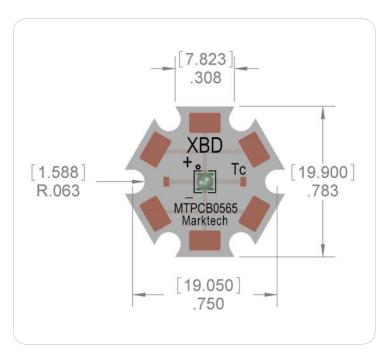
- * Exceeding maximum ratings may damage the LED and cause potential safety hazards.
- * Elevated operating temperatures can be expected to negatively impact the service life (lumen output)
- * All data is related to entire assembly. Data reflects statistical mean values. Actual data may differ depending on variances in the manufacturing process.
- * End users need to take into account the lumen depreciation as the temperature rises with various thermal solutions installed.
- * It is highly recommended for the user to review the CREE XBD Series page for additional and most recent technical data at http://www.cree.com/led-components-and-modules/products/xlamp/discrete-directional/xlamp-xbd

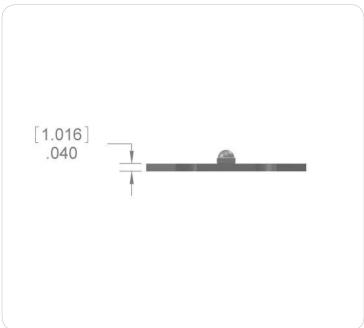
2012-04-18

- Note 1: Using continuously under elevated loads (i.e. the application of high temperature/current/voltage or a significant change in temperature, etc.) may cause this product to significantly decrease in reliability even if the operating conditions are within the absolute maximum ratings.
- Note 2: The thermal resistance from the LED junction to ambient temperature, Rth(j-a), should be kept below 10°C/W so that the LED is not exposed to a condition beyond the absolute maximum ratings.
- Note 3: The temperature of the LED assembly must be measured at the T_c -point according to EN60598-1 in a thermally constant status with a temperature sensor or a temperature sensitive label.

Hardware (not included)

- > Mount with #4 Machine Screws.
- > 16AWG Maximum Wire Gauge.
- > Use only with constant current power supplies.


PCB Fabrication


> Layer Count: 1

Core Material: 6061-T6 AluminumSingle Layer Copper Weight: 1oz

> Solder Mask: White

> Finishing Plating: Pb Free HASL

The information contained herein is subject to change without notice.

2012-04-18