

MEZS7-1S-4SPDPowerBank

Bidirectional PD Power Bank Solution with Fully Integrated Buck-Boost Charger for 1-Cell to 4-Cell in Series Battery Packs

DESCRIPTION

The MEZS7-1S-4SPDPowerBank is a solution module for PD applications with the MP2651 and CCG3PA, supporting PD3.0 and BC1.2 protocols. The MP2651 is a buck-boost charger designed for battery packs with 1 cell to 4 cells in series. The device supplies a wide 3V to 21V voltage range at the IN pin in source mode. It is compliant with USB PD specifications. The CCG3PA is a Cypress PD controller that handles the PD protocol.

The MEZS7-1S-4SPDPowerBank contains a DRP USB Type-C port. When an adapter is inserted, the port acts as a UFP to charge the battery with a maximum 5A charge current. When a load is inserted, the port acts as a DFP to power the USB from the battery.

PERFORMANCE SUMMARY (1)

Parameters	Conditions	Value
Input voltage (V _{IN}) range		4V to 22V
Battery charge regulation voltage (VBATT_REG)		8.4V (I ² C-configurable)
Fast charge current	V _{IN} = 9V to 20V	5A (l ² C-configurable)
Output voltage in source mode (V _{IN_SRC})		3V to 21V
Charge typical efficiency	V _{IN} = 20V, V _{BATT} = 8V, I _{CC} = 5A	94.2%
Charge peak efficiency	V _{IN} = 12V, V _{BATT} = 8V, I _{CC} = 3A	96.33%
Source mode typical efficiency	V _{BATT} = 7.4V, V _{IN_SRC} = 20V, I _{IN_SRC} = 1.5A	93.5%
Source mode peak efficiency	$V_{BATT} = 8.4V, V_{IN}_{SRC} = 12V, I_{IN}_{SRC} = 1.5A$	96.37%
Switching frequency		600kHz (l ² C-configurable)

Specifications are at $T_A = 25^{\circ}C$, unless otherwise noted.

Note:

Refer to the MP2651 datasheet for details. 1)

> ~ MPL Optimized Performance with MPS Inductor MPL-AL5030 Series

EVALUATION BOARD

LxWxH (8.9cmx8.9cmx0.16cm)

Board Number	MPS IC Number
MEZS7-1S-4SPDPowerBank	MP2651GVT

QUICK START GUIDE

The MEZS7-1S-4SPDPowerBank is a reference design using the MP2651 for PD applications, and it includes a DRP USB Type-C port. Its layout accommodates most commonly used capacitors. The charge current is preset to 5A, and the charge-full voltage is preset to 8.4V for a Li-ion battery with 2 cells in series. In reverse source mode, the output is preset to 5V/3A. All of the charging/discharging parameters are set by the CCG3PA. The user can also download their own codes to the CCG3PA through the board's configuration header.

- 1. Connect the battery terminal to:
 - a. Positive (+): VBATT
 - b. Negative (-): GND
- 2. If using a battery simulator, preset the battery voltage between 0V and 8.4V, then turn it off. Connect the battery simulator's ports to:
 - a. Positive (+): VBATT
 - b. Negative (-): GND
- 3. Ensure that the battery voltage is present (if using a battery simulator, keep the simulator on).
- 4. For charge mode testing, connect the USB Type-C port to an adapter with a USB Type-C to Type-C cable or USB Type-A to USB Type-C cable. Charge mode should start automatically, and the charge current is adjusted according to the PD protocol communication result between the adapter and board.
- 5. For source mode testing, connect the devices to a USB Type-C port with a USB Type-C to Type-C cable, USB Type-C to Micro-B cable, or a USB Type-C to lighting cable. Source mode should start automatically and provide the required voltage to the devices.

Figure 1 shows the measurement equipment set-up.

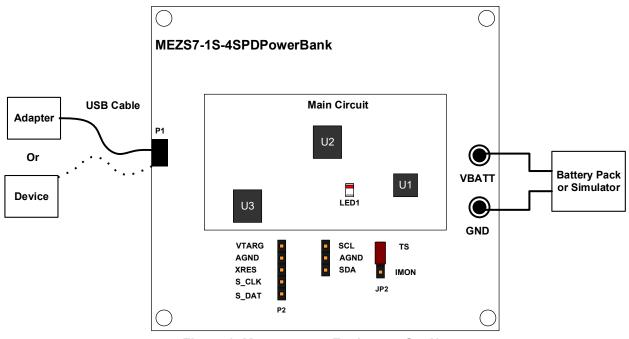


Figure 1: Measurement Equipment Set-Up

EVALUATION BOARD SCHEMATIC

크트

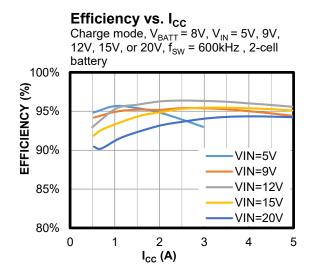
П

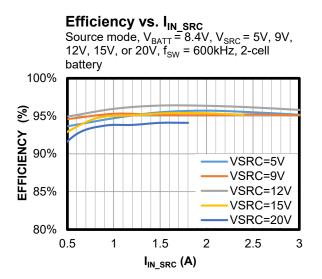
Figure 2: Evaluation Board Schematic

MEZS7-1S-4SPDPOWERBANK BILL OF MATERIALS

П

Qty	Ref	Value	Description	Package	Manufacturer	Manufacturer PN
4	C10, C11, C27, C28	22µF	Ceramic capacitor, 25V, X5R	0805	Murata	GRM21BR61E226ME44L
7	C2, C3, C16, C17, C20, C21, C22	10µF	Ceramic capacitor, 25V, X5R	0805	Murata	GRM21BR61E106KA73
3	C4, C32, C34	1µF	Ceramic capacitor, 50V, X5R	0603	Murata	GRM188R61H105KAAL
2	C26, C35	4.7µF	Ceramic capacitor, 25V, X5R	0603	Murata	GRM188R61E475KE11D
2	C9, C19	1µF	Ceramic capacitor, 25V, X7R	0402	Murata	GRM155R61E105KA12
7	C7, C8, C14, C18, C30, C31, C32	100nF	Ceramic capacitor, 25V, X7R	0603	Wurth	885012206071
1	C1	1nF	Ceramic capacitor, 50V, X7R	0603	TDK	C1608X7R1H102K
2	C5, C6	330pF	Ceramic capacitor, 50V, X7R	0603	Murata	GRM188R71H331KA01D
8	C12, C13, C15, C25, C36, C29, C40, C41	NC				
2	R4, 'R14	1MΩ	Film resistor, 1%	0603	Yageo	RC0603FR-071ML
1	R21	2kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-072KL
2	R26, R30	5.1kΩ	Film resistor, 5%	0603	Yageo	RC0603JR-075K1L
9	R1, R5, R6, R7, R8, R23, R19, R20, R29	0Ω	Film resistor, 5%	0603	Yageo	RC0603JR-070RL
1	R2	2ΜΩ	Film resistor, 5%	0603	Yageo	RC0603JR-072ML
1	R17	200kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-07200KL
1	R18	13kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-0713KL
1	R22	15kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-0715KL
2	R27, R31	100kΩ	Film resistor, 5%	0603	Yageo	RC0603JR-07100KL
1	RNTC1	10kΩ	Film resistor, 1%	0603	Yageo	RC0603FR-0710KL
6	R9, R16, R10, R11, R24, R25	2Ω	Film resistor, 5%	0603	LIZ	CR0603JA02R0G
1	RS1	5mΩ	Film resistor, 1%	1206	Yageo	PA1206FRF070R005L
4	R12, R13, R15, R32	20mΩ	Film resistor, 1%	1206	Cyntec	RL1632H-R020-FN

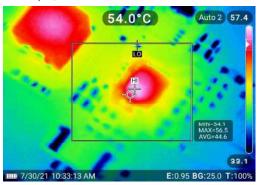

MEZS7-1S-4SPDPowerBank Rev. 1.0 4/20/2022 MPS Proprietary In


MEZS7-1S-4SPDPOWERBANK BILL OF MATERIALS	(continued)
--	-------------

Qty	Ref	Value	Description	Package	Manufacturer	Manufacturer PN
1	P1	5A	USB Type-C connector	SMD	YaLian	93579102
2	M1, M2	30V, 20A	N-channel MOSFET	PowerPAK- 1212-8	Vishay	SISA14DN-T1-GE3
2	D1, D2	20V, 0.5A	Schottky diode	SOD-123	Diodes	B0520LW-7-F
4	D3, D4, D5, D6	NC	NC			
1	LED1	Green	Green LED	0805	Bai Hong	BL-HGE35A-AV-TRB
1	U3	24.5V	PD controller	QFN-24 (4mmx4mm)	Cypress	CYPD3171-24LQXQ
1	U1	MP2013A	LDO	QFN-6 (2mmx2mm)	MPS	MP2013AGG
1	U2	MP2651	Charger IC	TQFN-30 (4mmx5mm)	MPS	MP2651GVT-0000
1	L1	1.5µH	Inductor, 1.5μH, 9.7mΩ, 9A	SMD	MPS	MPL-AL5030-1R5

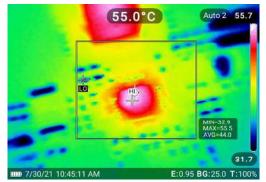
SOLUTION MODULE TEST RESULTS

Performance curves and waveforms are tested on the solution module. $C_{IN} = 5 \times 10\mu F + 1 \times 1\mu F$, $C_{CFLR} = 2 \times 22\mu F + 1 \times 1\mu F$, $C_{BATT} = 2 \times 22\mu F$, $L = 1.5\mu H$ (10m Ω), $T_A = 25^{\circ}C$, unless otherwise noted.

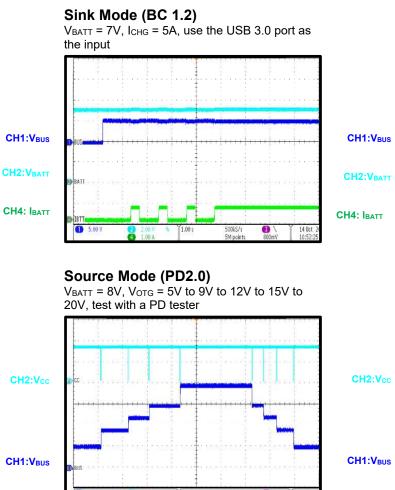


SOLUTION MODULE TEST RESULTS (continued)

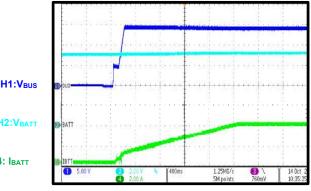
Performance curves and waveforms are tested on the evaluation board. $C_{IN} = 5 \times 10\mu F + 1 \times 1\mu F$, $C_{CFLR} = 2 \times 22\mu F + 1 \times 1\mu F$, $C_{BATT} = 2 \times 22\mu F$, L = 1.5 μ H (10m Ω), $f_{SW} = 600$ kHz, 2-cell battery, $T_A = 25^{\circ}$ C, unless otherwise noted.


Thermal Performance

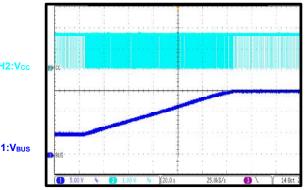
Charge mode: V_{IN} = 20V, V_{BATT} = 8.2V, I_{CC} = 5A, no forced airflow, T_{CASE} = 56.5°C


Thermal Performance

Source mode: V_{BATT} = 8.2V, V_{IN_SRC} = 20V, I_{IN_SRC} = 1.8A, no forced airflow, T_{CASE} = 55.5°C


SOLUTION MODULE TEST RESULTS (continued)

Performance curves and waveforms are tested on the evaluation board. $C_{IN} = 5 \times 10\mu F + 1 \times 1\mu F$, $C_{CFLR} = 2 \times 22\mu F + 1 \times 1\mu F$, $C_{BATT} = 2 \times 22\mu F$, L = 1.5 μ H (10m Ω), $f_{SW} = 600$ kHz, 2-cell battery, $T_A = 25^{\circ}$ C, unless otherwise noted.


Sink Mode (PD Adapter)

 V_{BATT} = 7V, I_{CHG} = 5A, use the PD adapter (max 15V/2A) as the input

Source Mode (PD 3.0)

 $V_{BATT} = 8V$, $V_{OTG} = 3.3V$ to 16V with 20mV/step, test with PD tester

PCB LAYOUT

Ρ.

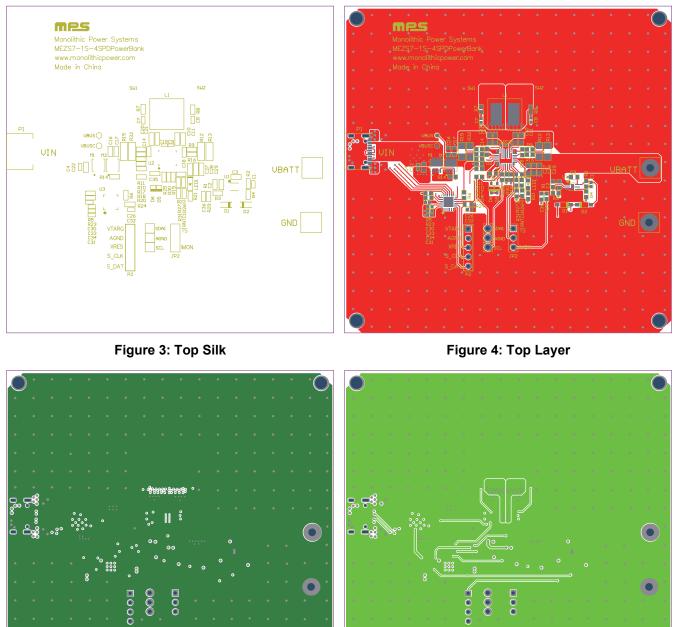


Figure 5: Mid-Layer 1

Figure 6: Mid-Layer 2

ē 6

PCB LAYOUT (continued)

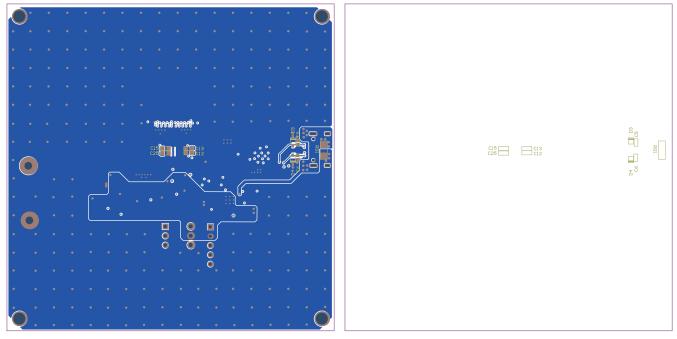


Figure 7: Bottom Layer

Figure 8: Bottom Silk

REVISION HISTORY

Revision #	Revision Date	Description	Pages Updated
1.0	4/20/2022	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.