ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

1-to-64 Bit Variable Length **Shift Register**

The MC14557B is a static clocked serial shift register whose length may be programmed to be any number of bits between 1 and 64. The number of bits selected is equal to the sum of the subscripts of the enabled Length Control inputs (L1, L2, L4, L8, L16, and L32) plus one. Serial data may be selected from the A or B data inputs with the A/B select input. This feature is useful for recirculation purposes. A Clock Enable (CE) input is provided to allow gating of the clock or negative edge clocking capability.

The device can be effectively used for variable digital delay lines or simply to implement odd length shift registers.

- 1-64 Bit Programmable Length
- Q and \overline{Q} Serial Buffered Outputs
- Asynchronous Master Reset
- All Inputs Buffered
- No Limit On Clock Rise and Fall Times
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Capable of Driving Two Low-power TTL Loads or one Low-power Schottky TTL Load Over the Rated Temperature Range
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 2)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
T _L	Lead Temperature (8–Second Soldering)	260	°C

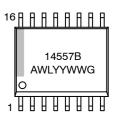
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

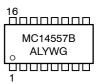
- 1. V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.
- 2. Temperature Derating: Plastic "P and D/DW" Packages: - 7.0 mW/°C From 65°C To 125°C

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS





SO-16 WB DW SUFFIX CASE 751G

SOEIAJ-16 **F SUFFIX CASE 966**

= Assembly Location

WL. L = Wafer Lot YY, Y = Year WW, W = Work Week = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

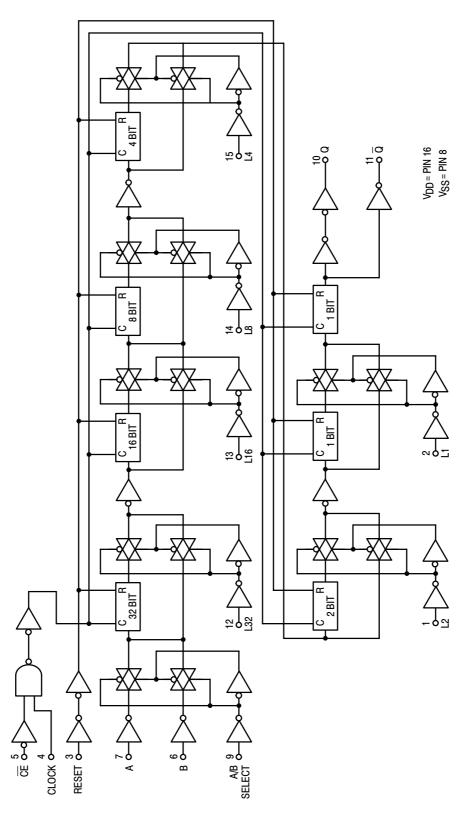


Figure 1. Logic Diagram

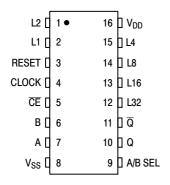


Figure 2. Pin Assignment

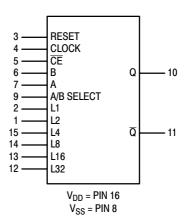


Figure 3. Block Diagram

TRUTH TABLE

	Output			
Rst	A/B	Clock	CE	Q
0	0	_	0	В
0	1	_	0	Α
0	0	1	7	В
0	1	1	7	Α
1	Х	Х	X	0

Q is the output of the first selected shift register stage.
X = Don't Care

LENGTH SELECT TRUTH TABLE

L32	L16	L8	L4	L2	L1	Register Length
0	0	0	0	0	0	1 Bit
0	0	0	0	0	1	2 Bits
0	0	0	0	1	0	3 Bits
0	0	0	0	1	1	4 Bits
0	0	0	1	0	0	5 Bits
0	0	0	1	0	1	6 Bits
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
1	0	0	0	0	0	33 Bits
1	0	0	0	0	1	34 Bits
•	•	•	•	•	•	•
•	•	•	•	•	•	•
•	•	•	•	•	•	•
1	1	1	1	0	0	61 Bits
1	1	1	1	0	1	62 Bits
1	1	1	1	1	0	63 Bits
1	1	1	1	1	1	64 Bits

NOTE: Length equals the sum of the binary length control subscripts plus one.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

				- 55°C 25°C			125	125°C			
Symbol	Characteristic		V _{DD} Vdc	Min	Max	Min	Typ (Note 3)	Max	Min	Max	Unit
V _{OL}	Output Voltage V _{in} = V _{DD} or 0	"0" Level	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
V _{OH}	V _{in} = 0 or V _{DD}	"1" Level	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
V _{IL}	Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
V _{IH}	$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	"1" Level	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	- - -	Vdc
I _{OH}	Output Drive Current (V _{OH} = 2.5 Vdc) (V _{OH} = 4.6 Vdc) (V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc)	Source	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2	- - - -	-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	- - - -	-1.7 -0.36 -0.9 -2.4	- - - -	mAdc
I _{OL}	$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	
l _{in}	Input Current		15	-	±0.1	-	±0.00001	±0.1	-	±1.0	μAdc
C _{in}	Input Capacitance (V _{in} = 0)		-	-	-	-	5.0	7.5	-	-	pF
I _{DD}	Quiescent Current (Per Package)		5.0 10 15	- - -	5.0 10 20	- - -	0.010 0.020 0.030	5.0 10 20	- - -	150 300 600	μAdc
I _T	Total Supply Current (Notes 4, 5) (Dynamic plus Quiescent, Per Packa (C _L = 50 pF on all outputs, all buffers		5.0 10 15			$I_{T} = (3$.75 μA/kHz) .50 μA/kHz) .25 μA/kHz)	f + I _{DD}	•	•	μAdc

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF: I_T(C_L) = I_T(50 pF) + (C_L – 50) Vfk where: I_T is in μA (per package), C_L in pF, V = (V_{DD} – V_{SS}) in volts, f in kHz is input frequency, and k = 0.001.

SWITCHING CHARACTERISTICS (Note 6) ($C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$)

Symbol	Characteristic	V _{DD}	Min	Typ (Note 7)	Max	Unit
t _{TLH} ,	Rise and Fall Time, Q or Q Output					ns
t _{THL}	t_{TLH} , $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns}$	5	_	100	200	
	t_{TLH} , $t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns}$	10	_	50	100	
	t_{TLH} , $t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$	15	_	40	80	
t _{PLH} ,	Propagation Delay, Clock or CE to Q or Q					ns
t _{PHL}	t _{PLH} , t _{PHL} = (1.7 ns/pF) C _L + 215 ns	5	_	300	600	
	t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 97 \text{ ns}$	10	_	130	260	
	t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 65 \text{ ns}$	15	_	90	180	
t _{PLH} ,	Propagation Delay, Reset to Q or Q					ns
t _{PHL}	t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 215 \text{ ns}$	5	_	300	600	
	t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 97 \text{ ns}$	10	_	130	260	
	t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 70 \text{ ns}$	15	_	95	190	
t _{WH(cl)}	Pulse Width, Clock	5	200	95	_	ns
-vvn(ci)		10	100	45	_	
		15	75	35	_	
t _{WH(rst)} Pu	Pulse Width, Reset	5	300	150	_	ns
	1 4.55 111411, 115551	10	140	70	_	
		15	100	50	_	
f _{cl} Clock F	Clock Frequency (50% Duty Cycle)	5	_	3.0	1.7	MHz
	Sicon requestoy (50% Buty Cycle)	10	_	7.5	5.0	1
		15	_	13.0	6.7	
t _{su}	Setup Time, A or B to Clock or CE					ns
ou	Worst case condition: L1 = L2 = L4 = L8 =	5	700	350	_	
	L16 = L32 = V _{SS} (Register Length = 1)	10	290	130	_	
		15	145	85	_	
	Best case condition: L32 = V _{DD} , L1 through L16 =	5	400	45	_	
	Don't Care (Any register length from 33 to 64)	10	165	5	_	
	, , , , , ,	15	60	0	_	
t _h	Hold Time, Clock or CE to A or B					ns
	Best case condition: L1 = L2 = L4 = L8 = L16 =	5	200	-150	_	
	L32 = V _{SS} (Register Length = 1)	10	100	-60	_	
	35 (3)	15	10	-50	_	
	Worst case condition: L32 = V _{DD} , L1 through L16 =	5	400	50	-	
	Don't Care (Any register length from 33 to 64)	10	185	25	_	
		15	85	22	_	
t _r ,	Rise and Fall Time, Clock	5		•		_
t _f	·	10		No Limit		
		15				
t _r ,	Rise and Fall Time, Reset or CE	5	_	_	15	μS
t _f	,	10	_	_	5	
		15	_	_	4	
t _{rem}	Removal Time, Reset to Clock or CE	5	160	80	_	ns
16111		10	80	40	_	
		1	70	_	1	1

^{6.} The formulas given are for the typical characteristics only at 25°C.
7. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

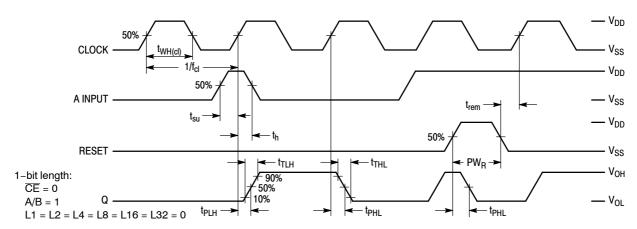
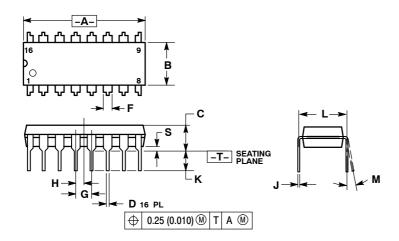


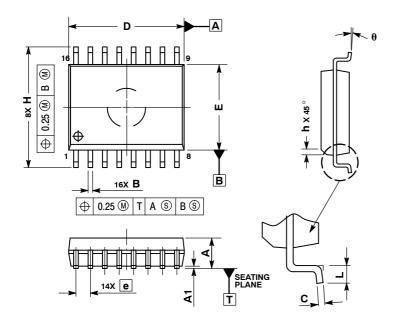
Figure 4. Timing Diagram


ORDERING INFORMATION

Device	Package	Shipping [†]
MC14557BFELG	SOEIAJ-16 (Pb-Free)	2000 / Tape & Reel
MC14557BDWR2G	SO-16 (WB)	1000 / Tape & Reel
MC14557BCPG	PDIP-16 (Pb-Free)	500 Units / Rail
MC14557BDWG	SO-16 (WB)	47 Units / Rail

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS


PDIP-16 **P SUFFIX** CASE 648-08 **ISSUE T**

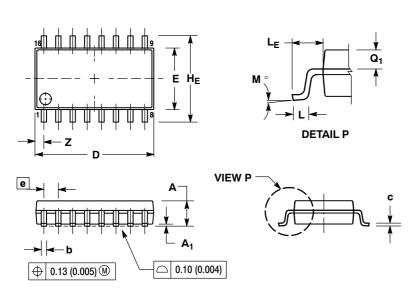
- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
- DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. DIMENSION B DOES NOT INCLUDE
- MOLD FLASH.
 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27	BSC	
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
М	0°	10 °	0°	10 °	
S	0.020	0.040	0.51	1.01	

SO-16 WB DW SUFFIX CASE 751G-03 **ISSUE C**

- NOTES:
 1. DIMENSIONS ARE IN MILLIMETERS.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION.

- MOLD PHOTHUSION.


 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.

 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS				
DIM	MIN	MAX			
Α	2.35	2.65			
A1	0.10	0.25			
В	0.35	0.49			
С	0.23	0.32			
D	10.15	10.45			
Е	7.40	7.60			
е	1.27	BSC			
Н	10.05	10.55			
h	0.25	0.75			
J	0.50	0.90			
a	0 °	7 °			

PACKAGE DIMENSIONS

SOEIAJ-16 CASE 966-01 ISSUE A

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 2. DONTHOLDING DIMILIFORM. MILLIMIT LIT.

 3. DIMENSIONS D AND E DO NOT INCLUDE
 MOLD FLASH OR PROTRUSIONS AND ARE
 MEASURED AT THE PARTING LINE. MOLD FLASH
 OR PROTRUSIONS SHALL NOT EXCEED 0.15
 (0.006) PER SIDE.
- TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A ₁	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
C	0.10	0.20	0.007	0.011
D	9.90	10.50	0.390	0.413
Е	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050 BSC	
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10°	0 °	10°
Q_1	0.70	0.90	0.028	0.035
Z		0.78		0.031

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910 **Japan Customer Focus Center**Phone: 81–3–5773–3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative