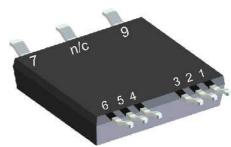
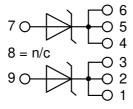


preliminary


V_{RRM}	=	200 V
I _{FAV}	<i>=</i> 2x	65 A
VF	=	0.82 V

High Performance Schottky Diode Low Loss and Soft Recovery Parallel legs

Part number


DSA120X200LB

Marking on Product: DSA120X200LB

Backside: isolated

Features / Advantages:

- Very low Vf
- Extremely low switching losses
- Low Irm values
- Improved thermal behaviour
- High reliability circuit operation
 Low voltage peaks for reduced
- protection circuits
- Low noise switching

Applications:

- Rectifiers in switch mode power supplies (SMPS)
- Free wheeling diode in low voltage converters

Package: SMPD

- Isolation Voltage: 3000 V~
- Industry convenient outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Backside: DCB ceramic
- Reduced weight
- Advanced power cycling

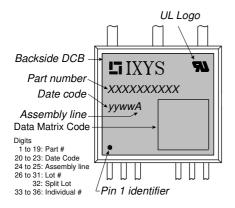
Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littlefuse.com/disclaimer-electronics.

IXYS reserves the right to change limits, conditions and dimensions.

preliminary

Schottky				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse block	ing voltage	$T_{VJ} = 25^{\circ}C$			200	V
V _{RRM}	max. repetitive reverse blocking voltage		$T_{VJ} = 25^{\circ}C$			200	V
I _R	reverse current, drain current	$V_{R} = 200 V$	$T_{VJ} = 25^{\circ}C$			1	mA
		$V_{R} = 200 V$	$T_{vJ} = 125^{\circ}C$			5	mA
V _F	forward voltage drop	I _F = 60 A	$T_{VJ} = 25^{\circ}C$			0.98	V
		I _F = 120 A				1.22	V
		$I_{F} = 60 \text{ A}$	T _{vJ} = 150°C			0.82	V
		$I_{F} = 120 \text{ A}$				1.10	V
FAV	average forward current	T _c = 130°C	T _{vJ} = 175°C			65	A
		rectangular d = 0.5					
V _{F0}	threshold voltage $T_{v,i} = 175^{\circ}$		T _{vJ} = 175°C			0.51	V
r _F	slope resistance { for power loss calculation only					2.7	mΩ
R _{thJC}	thermal resistance junction to cas	е				0.8	K/W
R _{thCH}	thermal resistance case to heatsir	nk			0.40		K/W
P _{tot}	total power dissipation		$T_c = 25^{\circ}C$			185	W
	max. forward surge current	t = 10 ms; (50 Hz), sine; $V_{R} = 0 V$	$T_{vJ} = 45^{\circ}C$			700	A
C	junction capacitance	$V_{R} = 24 V f = 1 MHz$	$T_{vJ} = 25^{\circ}C$		394		pF


IXYS reserves the right to change limits, conditions and dimensions.

20190212b

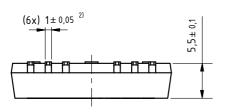
preliminary

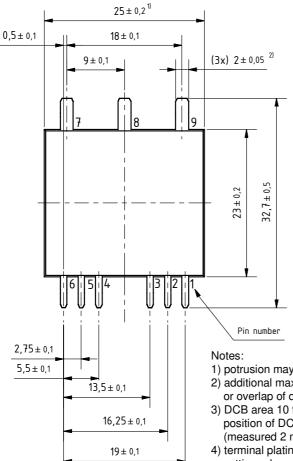
Package SMPD				I	Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
I _{RMS}	RMS current	per terminal				100	Α	
T _{VJ}	virtual junction temperature			-55		175	°C	
T_{op}	operation temperature			-55		150	°C	
T _{stg}	storage temperature			-55		150	°C	
Weight					8.5		g	
F _c	mounting force with clip			40		130	Ν	
d _{Spp/App}	creepage distance on surface striking distance through air			1.6			mm	
d _{Spb/Apb}	creepage distance on surface	Striking distance through an	terminal to backside	4.0			mm	
V _{ISOL}	isolation voltage t = 1 second t = 1 minute	t = 1 second		3000			V	
		50/60 Hz, RMS; lıso∟ ≤ 1 mA	2500			V		

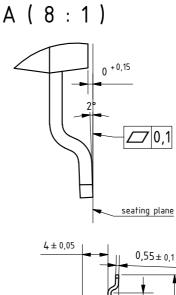
Part description

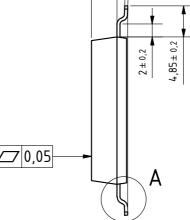
- D = Diode
- S = Schottky Diode A = Iow VF
- 120 = Current Rating [A]
- X = Parallel legs
- 200 = Reverse Voltage [V]
- LB = SMPD-B

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DSA120X200LB-TUB	DSA120X200LB	Tube	20	524773
Alternative	DSA120X200LB-TRR	DSA120X200LB	Tape & Reel	200	523115

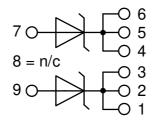

Equiva	alent Circuits for	Simulation	* on die level	$T_{VJ} = 175 ^{\circ}C$
)[R	Schottky		
V _{0 max}	threshold voltage	0.51		V
$\mathbf{R}_{0 \text{ max}}$	slope resistance *	2.7		mΩ


20190212b




preliminary

Outlines SMPD



1) potrusion may add 0.2 mm max. on each side

- 2) additional max. 0.05 mm per side by punching misalignement or overlap of dam bar or bending compression
- DCB area 10 to 50 μm convex; position of DCB area in relation to plastic rim: ±25 μm (measured 2 mm from Cu rim)
- 4) terminal plating: 0.2 1 μm Ni + 10 25 μm Sn (gal v.) cutting edges may be partially free of plating

IXYS reserves the right to change limits, conditions and dimensions.