

STW63N65DM2

N-channel 650 V, 0.042 Ω typ., 60 A MDmesh™ DM2 Power MOSFET in a TO-247 package

Datasheet - production data

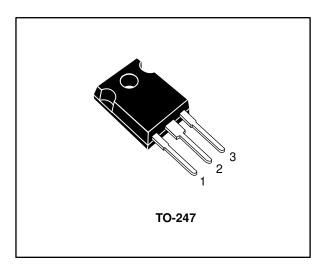
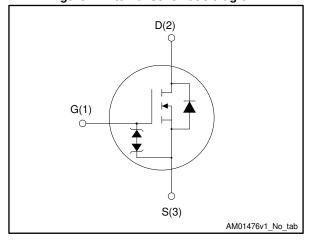



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D	P _{TOT}
STW63N65DM2	650 V	0.05 Ω	60 A	446 W

- Fast-recovery body diode
- Extremely low gate charge and input capacitance
- Low on-resistance
- 100% avalanche tested
- Extremely high dv/dt ruggedness
- Zener-protected

Applications

Switching applications

Description

This high-voltage N-channel Power MOSFET is part of the MDmesh $^{\mathsf{TM}}$ DM2 fast recovery diode series. It offers very low recovery charge (Q_{rr}) and time (t_{rr}) combined with low $R_{\mathsf{DS}(\mathsf{on})}$, rendering it suitable for the most demanding high-efficiency converters and ideal for bridge topologies and ZVS phase-shift converters.

Table 1: Device summary

Order code	Marking	Package	Packing
STW63N65DM2	63N65DM2	TO-247	Tube

Contents STW63N65DM2

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	rcuits	8
4	Packag	e information	9
	4.1	TO-247 package information	9
5	Revisio	on history	11

STW63N65DM2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _{GS}	Gate-source voltage	±25	V	
I-	Drain current (continuous) at T _{case} = 25 °C		^	
l _D	Drain current (continuous) at T _{case} = 100 °C	38	Α	
I _{DM} ⁽¹⁾	Drain current (pulsed) 240			
P _{TOT}	Total dissipation at T _{case} = 25 °C 446			
dv/dt ⁽²⁾	Peak diode recovery voltage slope	50	V/ns	
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness		V/IIS	
T _{stg}	Storage temperature range			
Tj	Operating junction temperature range	-55 to 150	°C	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.28	0000
R _{thj-amb}	Thermal resistance junction-ambient 50		°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
lar	Avalanche current, repetitive or non-repetitive	8	Α
E _{AS} ⁽¹⁾	Single pulse avalanche energy	1100	mJ

Notes:

 $^{(1)}Starting~T_{j}=25~^{\circ}C,~I_{D}=I_{AR},~V_{DD}=50~V.$

 $[\]ensuremath{^{(1)}}\mbox{Pulse}$ width is limited by safe operating area.

 $^{^{(2)}}I_{SD} \leq 60$ A, di/dt=800 A/ μ s, V $_{DS}$ peak < V $_{(BR)DSS}$, V $_{DD}$ = 80% V $_{(BR)DSS}$

 $^{^{(3)}}V_{DS} \le 520 \text{ V}$

2 Electrical characteristics

(T_{case} = 25 °C unless otherwise specified)

Table 5: Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	650			٧
	Zoro goto voltago droin	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V}$			10	
IDSS	Zero gate voltage drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 650 \text{ V},$ $T_{case} = 125 \text{ °C}^{(1)}$			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±5	μΑ
$V_{\text{GS(th)}}$	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 30 A		0.042	0.05	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter Test conditions		Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	5500	1	
Coss	Output capacitance	$V_{DS} = 100 \text{ V}, f = 1 \text{ MHz},$	-	210	1	рF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0 V$	-	3	ı	ρ.
Coss eq. (1)	Equivalent output capacitance	$V_{DS} = 0$ to 520 V, $V_{GS} = 0$ V	1	456	ı	pF
Rg	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D = 0 \text{ A}$	-	3.3	-	Ω
Qg	Total gate charge	$V_{DD} = 520 \text{ V}, I_{D} = 60 \text{ A},$	-	120	1	
Q _{gs}	Gate-source charge	V _{GS} = 0 to 10 V (see <i>Figure 15: "Test circuit for</i>	-	27	1	nC
Q_{gd}	Gate-drain charge	gate charge behavior")	-	58	-	

Notes:

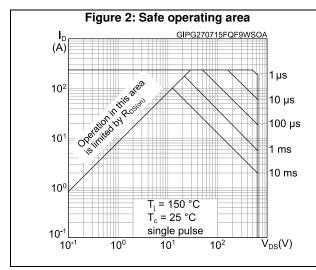
Table 7: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 325 \text{ V}, I_D = 30 \text{ A}$	1	33	1	
tr	Rise time	R _G = 4.7 Ω , V _{GS} = 10 V (see Figure 14: "Test circuit for	1	13.5	ı	
$t_{\text{d(off)}}$	Turn-off delay time	resistive load switching times"	1	114	ı	ns
t _f	Fall time	and Figure 19: "Switching time waveform")	-	11.5	,	

 $^{^{(1)}\}mbox{Defined}$ by design, not subject to production test.

 $^{^{(1)}}$ C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}.

Table 8: Source-drain diode


Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		60	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		240	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 60 A	1		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 60 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	1	154		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for	-	0.94		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	ı	12.2		Α
t _{rr}	Reverse recovery time	$I_{SD} = 60 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	1	288		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 ^{\circ}\text{C}$ (see Figure 16: "Test circuit for	-	3.65		μC
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	25.4		Α

Notes:

 $^{^{(1)}}$ Pulse width is limited by safe operating area.

 $^{^{(2)}\}text{Pulse}$ test: pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

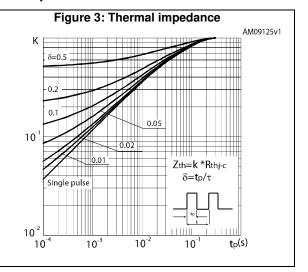
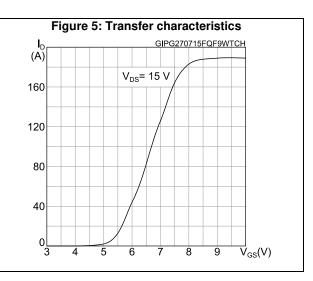
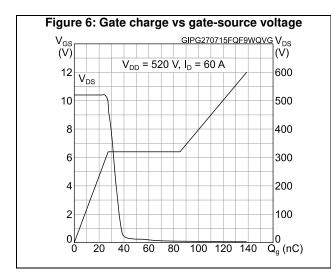
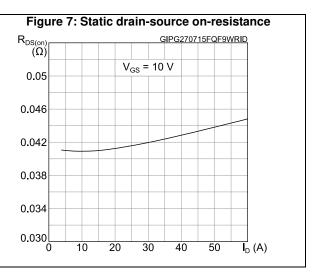


Figure 4: Output characteristics

ID GIPG270715FQF9WOCH


VGS = 9, 10 V


VGS = 7 V


120

VGS = 6 V

VGS = 5 V

STW63N65DM2 Electrical characteristics

Figure 8: Capacitance variations C (pF) GIPG270715FQF9WCVR 10⁴ C_{ISS} 10^{3} Coss 10² f = 1 MHz 10¹ C_{RSS} 10⁰ $\overline{V}_{DS}(V)$ 10⁻¹ 10⁰ 10¹ 10²

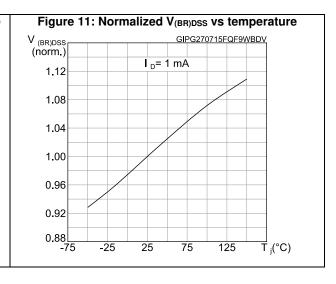
Figure 9: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GIPG270715FQF9WVTH $I_D = 250 \, \mu A$ 1.1 1.0 0.9 0.8 0.7 0.6 -75 25 75 T_i (°C) -25 125

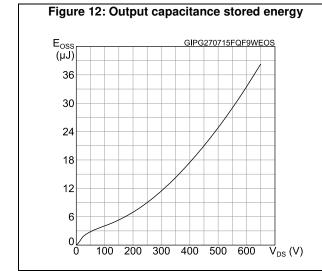
Figure 10: Normalized on-resistance vs temperature

R_{DS(on)} GIPG270715FQF9WRON
(norm.)

2.2

1.8

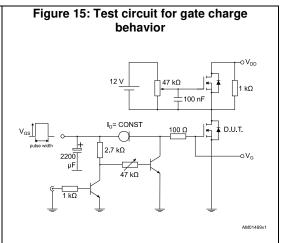

1.4

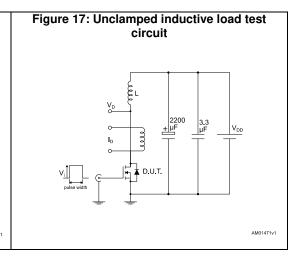

1.0

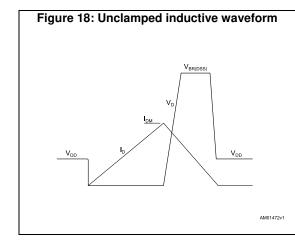

0.6

0.2

-75
-25
25
75
125
T_j (°C)






Test circuits STW63N65DM2

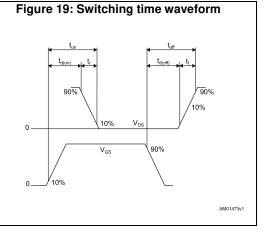

3 Test circuits

Figure 14: Test circuit for resistive load switching times

STW63N65DM2 Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 TO-247 package information

HEAT-SINK PLANE øΡ S øR Ľ2 *b1 b2* BACK VIEW 0075325_8

Figure 20: TO-247 package outline

Table 9: TO-247 package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
Е	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

STW63N65DM2 Revision history

5 Revision history

Table 10: Document revision history

Date	Revision	Changes
05-May-2017	1	Initial release

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved