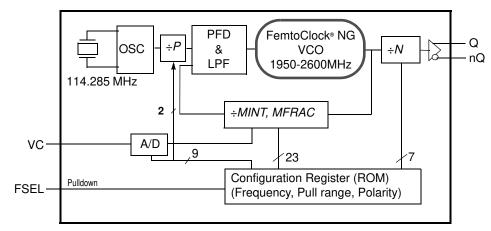
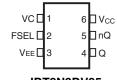
IDT8N3DV85

DATASHEET

General Description


The IDT8N3DV85 is a LVPECL Dual-Frequency Programmable VCXO with very flexible frequency and pull-range programming capabilities. The device uses IDT's fourth generation FemtoClock® NG technology for an optimum of high clock frequency and low phase noise performance. The device accepts 2.5V or 3.3V supply and is packaged in a small, lead-free (RoHS 6) 6-lead ceramic 5mm x 7mm x 1.55mm package.

The device can be factory-programmed to any two frequencies in the range of 15.476MHz to 866.67MHz and from 975MHz to 1,300MHz to the very high degree of frequency precision of 218Hz or better. The output frequency is selected by the FSEL pin. The extended temperature range supports wireless infrastructure, telecommunication and networking end equipment requirements.


Features

- Fourth Generation FemtoClock® NG technology
- Programmable clock output frequency from 15.476MHz to 866.67MHz and from 975MHz to 1,300MHz
- Two factory-programmed output frequencies
- VCO frequency programming resolution is 218Hz and better
- Factory-programmable VCXO pull range and control voltage polarity
- VCXO pull range programmable from typical ±12.5 to ±787.5ppm
- One 2.5V or 3.3V LVPECL clock output
- FSEL control input for frequency selection, LVCMOS/LVTTL compatible
- RMS phase jitter @ 622.08MHz (12kHz 20MHz):0.46ps (typical)
- RMS phase jitter @ 622.08MHz (50kHz 80MHz): 0.47ps (typical)
- 2.5V or 3.3V supply voltage
- -40°C to 85°C ambient operating temperature
- Lead-free (RoHS 6) 6-lead ceramic 5mm x 7mm x 1.55mm package

Block Diagram

Pin Assignment

IDT8N3DV85 6-lead ceramic 5mm x 7mm x 1.55mm package body CD Package Top View

Pin Description and Characteristic Tables

Table 1. Pin Descriptions

Number	Name	Туре		Description
1	VC	Input		VCXO Control Voltage input.
2	FSEL	Input	Pulldown	Frequency select pin. See Table 3A for function. LVCMOS/LVTTL interface levels.
3	V _{EE}	Power		Negative power supply.
4, 5	Q, nQ	Output		Differential clock output. LVPECL interface levels.
6	V _{CC}	Power		Positive power supply.

NOTE: Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance	FSEL			5.5		pF
OIN	input Oapacitance	VC			10		pF
R _{PULLDOWN}	Input Pulldown Resistor				50		kΩ

Function Tables

Table 3A. Frequency Selection

Input	
FSEL	Operation
0 (default)	Frequency 0
1	Frequency 1

NOTE: Frequency 0 and 1 are factory-programmed by IDT. Any frequency combination within the available frequency range can be ordered. For order information, see *FemtoClock NG Ceramic-Package XO and VCXO Ordering Product Information* document.

Table 3B. Output Frequency Range

15.476MHz to 866.67MHz
975MHz to 1,300MHz

NOTE: Supported output frequency range. The output frequency can be programmed to any frequency in this range and to a precision of 218Hz or better.

Principles of Operation

The block diagram consists of the internal 3rd overtone crystal and oscillator which provide the reference clock f_{XTAL} of 114.285MHz. The PLL includes the FemtoClock® VCO along with the Pre-divider (*P*), the feedback divider (*M*) and the post divider (*N*). The *P*, *M*, and *N* dividers determine the output frequency based on the f_{XTAL} reference. The feedback divider is fractional supporting a huge number of output frequencies. Internal registers are used to hold up to two different factory pre-set configuration settings. The configuration is selected via the FSEL pin. Changing the FSEL control results in an immediate change of the output frequency to the selected register values. The *P*, *M*, and *N* frequency configurations support an output frequency range 15.476MHz to 866.67MHz and 975MHz to 1,300MHz.

The devices use the fractional feedback divider with a delta-sigma modulator for noise shaping and robust frequency synthesis capability. The relatively high reference frequency minimizes phase noise generated by frequency multiplication and allows more efficient shaping of noise by the delta-sigma modulator. The output frequency is determined by the 2-bit pre-divider (*P*), the feedback divider (M) and the 7-bit post divider (*N*). The feedback divider (*M*) consists of both a 7-bit integer portion (*MINT*) and an 18-bit fractional portion (*MFRAC*) and provides the means for high-resolution frequency generation. The output frequency f_{OUT} is calculated by:

$$f_{OUT} = f_{XTAL} \cdot \frac{1}{P \cdot N} \cdot \left[MINT + \frac{MFRAC + 0.5}{2^{18}} \right]$$
(1)

Table 3A. Frequency Selection

Input	
FSEL	Selects
0 (default)	Frequency 0
1	Frequency 1

Frequency Configuration

An order code is assigned to each frequency configuration and the VCXO pull-range programmed by the factory (default frequencies). For more information on the available default frequencies and order codes, please see the Ordering Information Section in this document. For available order codes, see the *FemtoClock NG Ceramic-Package XO and VCXO Ordering Product Information* document.

For more information on programming capabilities of the device for custom frequency and pull-range configurations, see the *FemtoClock NG Ceramic 5x7 Module Programming Guide*.

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{CC}	3.71V
Inputs, V _I	-0.5V to V _{CC} + 0.5V
Outputs, I _O	
Continuous Current	50mA
Surge Current	100mA
Package Thermal Impedance, θ_{JA}	49.4°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Power Supply Voltage		3.135	3.3	3.465	V
I _{EE}	Power Supply Current			130	160	mA

Table 4B. Power Supply DC Characteristics, V_{CC} = 2.5V \pm 5%, V_{EE} = 0V, T_{A} = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Power Supply Voltage		2.375	2.5	2.625	V
I _{EE}	Power Supply Current			120	155	mA

Table 4C. LVPECL DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{CC} – 1.4		V _{CC} -0.9	V
V _{OL}	Output Low Voltage; NOTE 1		V _{CC} -2.0		V _{CC} -1.7	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs terminated with 50 Ω to V_CC – 2V.

Table 4D. LVPECL DC Characteristics, V_{CC} = 2.5V \pm 5%, V_{EE} = 0V, T_{A} = -40°C to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{CC} – 1.4		V _{CC} - 0.9	V
V _{OL}	Output Low Voltage; NOTE 1		V _{CC} - 2.0		V _{CC} – 1.5	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.4		1.0	V

NOTE 1: Outputs terminated with 50 Ω to V_CC – 2V.

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
)/			$V_{CC} = 3.3V$	2		V _{CC} + 0.3	V
V _{IH}	Input High Voltage		V _{CC} = 2.5V	1.7		V _{CC} + 0.3	V
V			$V_{CC} = V_{IN} = 3.465V$	-0.3		0.7	V
V _{IL}	Input Low Voltage		$V_{CC} = V_{IN} = 2.5V$	-0.3		0.7	V
I _{IH}	Input High Current	FSEL	$V_{CC} = V_{IN} = 3.465 V \text{ or } 2.625 V$			150	μΑ
I _{IL}	Input Low Current	FSEL	V_{CC} = 3.465V or 2.625V, V_{IN} = 0V	-5			μΑ

Table 4E. LVCMOS/LVTTL DC Characteristic, V_{CC} = 3.3V ± 5% or 2.5V ± 5%, V_{EE} = 0V, T_A = -40°C to 85°C

AC Electrical Characteristics

Table 5A. AC Characteristics.	$V_{CC} = 3.3V \pm 5\%$ or 2.5V $\pm 5\%$, $T_{A} = -40^{\circ}C$ to 85°C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
,			15.476		866.67	MHz
fout	Output Frequency Q, nQ		975		1,300	MHz
f _l	Initial Accuracy	Measured @ 25°C, $V_C = V_{CC}/2$			±10	ppm
		Option code = A or B			±100	ppm
f _S	Temperature Stability	Option code = E or F			±50	ppm
		Option code = K or L			±20	ppm
f	Aging	Frequency drift over 10 year life			±3	ppm
f _A	Aging	Frequency drift over 15 year life			±5	ppm
		Option code A, B (10 year life)			±113	ppm
f _T	Total Stability	Option code E, F (10 year life)			±63	ppm
.1		Option code K, L (10 year life)			±33	ppm
<i>t</i> jit(cc)	Cycle-to-Cycle Jitter; NOTE 1	622.08MHz		6	12	ps
<i>t</i> jit(per)	RMS Period Jitter			2	3	ps
<i>t</i> jit(Ø)	RMS Phase Jitter (Random); NOTE 2	622.08MHz, Integration Range: 12kHz - 20MHz		0.46	0.71	ps
<i>t</i> jit(Ø)	RMS Phase Jitter (Random); NOTE 2	622.08MHz, Integration Range: 50kHz - 80MHz		0.47	0.72	ps
	RMS Phase Jitter (Random); NOTE 2,3,4 f _{XTAL} = 114.285MHz	$500MHz < f_{OUT} \le 1300MHz$		0.44	0.77	ps
<i>t</i> jit(Ø)		125MHz < f _{OUT} ≤ 500MHz		0.52	0.90	ps
		$15MHz \le f_{OUT} \le 125MHz$		0.74	1.2	ps
Φ _N (100)	Single-side band phase noise, 100Hz from Carrier	622.08MHz		-68		dBc/H z
Φ _N (1k)	Single-side band phase noise, 1kHz from Carrier	622.08MHz		-89		dBc/H z
Φ _N (10k)	Single-side band phase noise, 10kHz from Carrier	622.08MHz		-113		dBc/H z
Φ _N (100k)	Single-side band phase noise, 100kHz from Carrier	622.08MHz		-118		dBc/H z
Φ _N (1M)	Single-side band phase noise, 1MHz from Carrier	622.08MHz		-127		dBc/H z
Φ _N (10M)	Single-side band phase noise, 10MHz from Carrier	622.08MHz		-137		dBc/H z
t _R / t _F	Output Rise/Fall Time	20% to 80%	80		500	ps
odc	Output Duty Cycle		45		55	%
PSNR	Power Supply Noise Rejection	50mV sinusoidal Noise 1kHz - 50MHz		-71.2		dBc
t _{STARTUP}	Device Startup Time after Power-up				10	ms
t _{SET}	Output Frequency Settling Time after FSEL value is changed				1	ms

Notes continued on next page.

IDT8N3DV85CCD REVISION A OCTOBER 30, 2013

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

NOTE: XTAL parameters (initial accuracy, temperature stability, aging and total stability) are guaranteed by manufacturing.

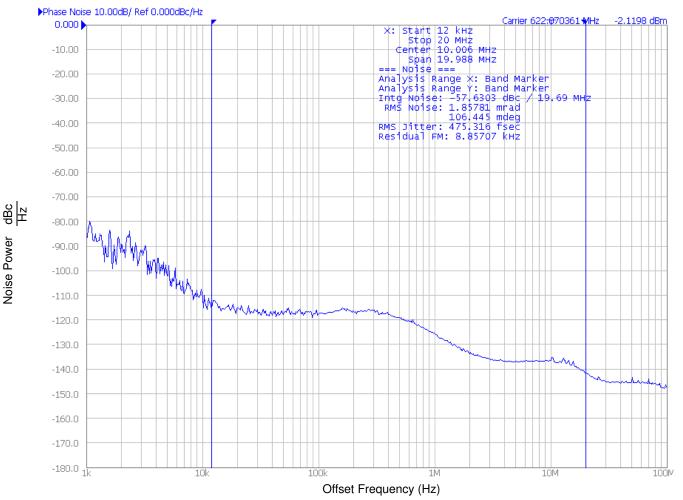
NOTE: Characterized with $V_C = V_{CC}/2$

NOTE 1: This parameter is defined in accordance with JEDEC standard 65.

NOTE 2: Refer to the phase noise plot.

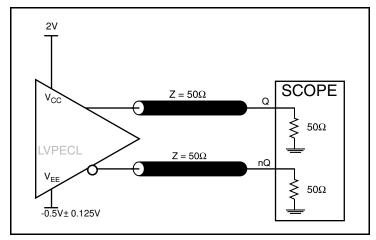
NOTE 3: Please see the FemtoClock Ceramic 5x7 Modules Programming Guide for more information on PLL feedback modes and the optimum configuration for phase noise.

Table 5B. VCXO Control Voltage Input (V _C) Characteristics	$V_{CC} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_{A} = -40^{\circ}C$ to $85^{\circ}C$
--	---

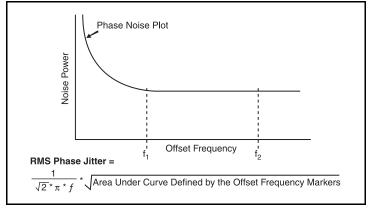

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
K	Oscillator Gain, NOTE 1, 2, 3	$V_{CC} = 3.3V$	7.57		477.27	ppm/V
Κ _V	Oscillator Gain, NOTE 1, 2, 3	$V_{CC} = 2.5V$	10		630	ppm/V
L _{VC}	Control Voltage Linearity; NOTE 4	BSL Variation	-5	±0.4	+5	%
BW	Modulation Bandwidth			100		kHz
Z _{VC}	VC Input Impedance			500		kΩ
VC _{NOM}	Nominal Control Voltage			V _{CC} /2		V
V _C	Control Voltage Tuning Range; NOTE 4		0		V _{CC}	V

NOTE 1: $V_C = 0V$ to V_{CC} . Oscillator gain is programmed by IDT. Gain = $(25 \cdot n) \div V_{CC}$ and is in the range of n=1 to n = 63.

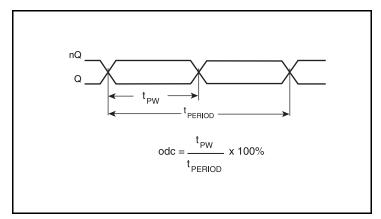
NOTE 2: Nominal oscillator gain: Pull range from Table 3B divided by the control voltage tuning range of 3.3V.

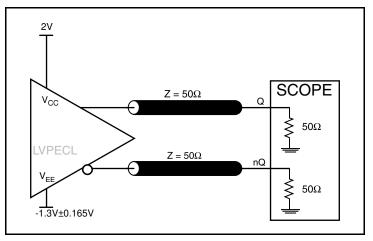

NOTE 3: For best phase noise performance, use the lowest K_V that meets the requirements of the application.

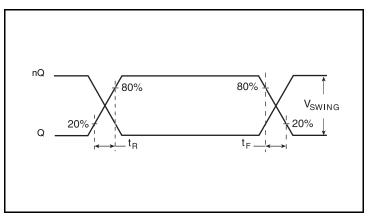
NOTE 4: BSL = Best Straight Line Fit: Variation of the output frequency vs. control voltage V_C, in percent. V_C ranges from 10% to 90% V_{CC}.

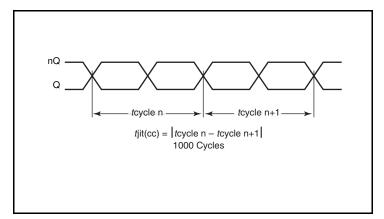


Typical Phase Noise at 622.08MHz (12kHz - 20MHz)

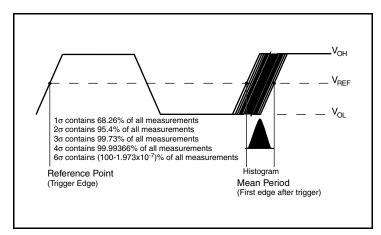

Parameter Measurement Information


2.5V LVPECL Output Load AC Test Circuit


RMS Phase Jitter


Output Duty Cycle/Pulse Width/Period

3.3V LVPECL Output Load AC Test Circuit



Output Rise/Fall Time

Cycle-to-Cycle Jitter

Parameter Measurement Information, continued

RMS Period Jitter

Applications Information

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 1A and 1B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

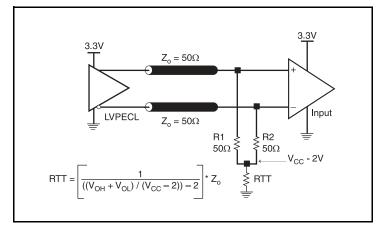


Figure 1A. 3.3V LVPECL Output Termination

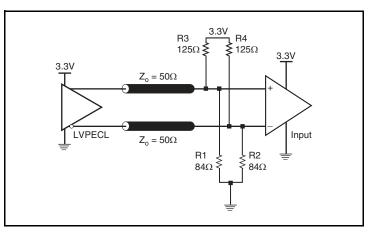


Figure 1B. 3.3V LVPECL Output Termination

Termination for 2.5V LVPECL Outputs

Figure 2A and Figure 2B show examples of termination for 2.5V LVPECL driver. These terminations are equivalent to terminating 50Ω to V_{CC} – 2V. For V_{CC} = 2.5V, the V_{CC} – 2V is very close to ground

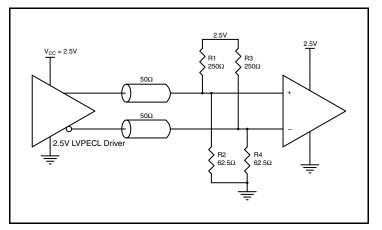


Figure 2A. 2.5V LVPECL Driver Termination Example

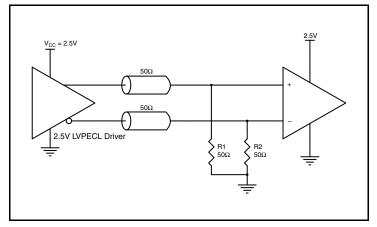


Figure 2C. 2.5V LVPECL Driver Termination Example

level. The R3 in Figure 2B can be eliminated and the termination is shown in *Figure 2C*.

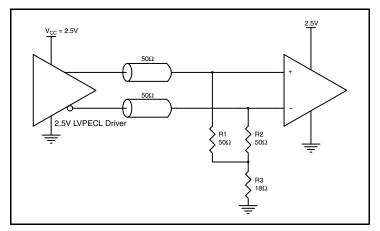


Figure 2B. 2.5V LVPECL Driver Termination Example

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS8N3DV85. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS8N3DV85 is the sum of the core power plus the power dissipated due to loading. The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated due to loading.

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.465V * 160mA = 554.40mW
- Power (outputs)_{MAX} = 30mW/Loaded Output pair

Total Power_MAX (3.465V, with all outputs switching) = 554.40mW + 30mW = 584.40mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = $\theta_{JA} * Pd_{total} + T_A$

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 49.4°C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}C + 0.584W * 49.4^{\circ}C/W = 113.8^{\circ}C$. This is below the limit of $125^{\circ}C$.

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 6 Lead Ceramic VFQFN, Forced Convection

θ_{JA} by Velocity				
Meters per Second	0	1	2	
Multi-Layer PCB, JEDEC Standard Test Boards	49.4°C/W	44.2°C/W	42.1°C/W	

3. Calculations and Equations.

The purpose of this section is to calculate the power dissipation for the LVPECL output pair.

LVPECL output driver circuit and termination are shown in Figure 3.

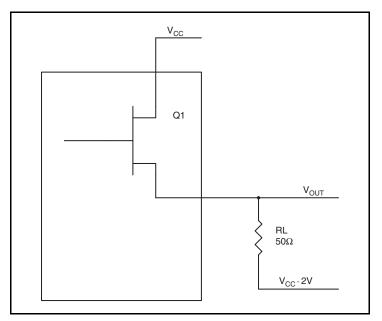


Figure 3. LVPECL Driver Circuit and Termination

To calculate power dissipation due to loading, use the following equations which assume a 50 Ω load, and a termination voltage of V_{CC} – 2V.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.9V$ ($V_{CC_MAX} - V_{OH_MAX}$) = 0.9V
- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CC_MAX} 1.7V$ ($V_{CC_MAX} - V_{OL_MAX}$) = 1.7V

Pd_H is power dissipation when the output drives high.

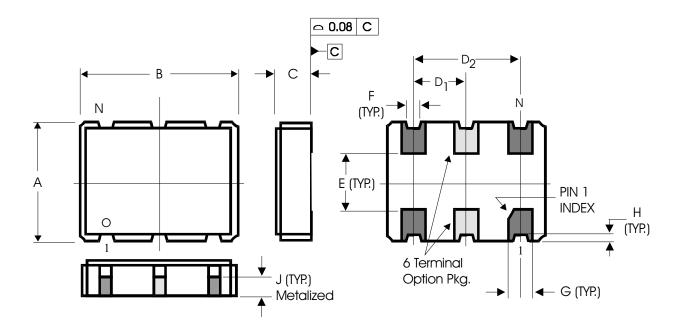
Pd_L is the power dissipation when the output drives low.

 $\begin{array}{l} {\sf Pd}_{-}{\sf H} = [({\sf V}_{{\sf OH}_{-}{\sf MAX}} - ({\sf V}_{{\sf CC}_{-}{\sf MAX}} - 2{\sf V}))/{\sf R}_{L}] \ ^{*} \ ({\sf V}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}}) = [(2{\sf V} - ({\sf V}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}}))/{\sf R}_{L}] \ ^{*} \ ({\sf V}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}}) = [(2{\sf V} - ({\sf V}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}}))/{\sf R}_{L}] \ ^{*} \ ({\sf V}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}}) = [(2{\sf V} - ({\sf V}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}})] \ ^{*} \ ({\sf V}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}}) = [(2{\sf V} - ({\sf O}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}})] \ ^{*} \ ({\sf V}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}}) = [(2{\sf V} - ({\sf O}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}})] \ ^{*} \ ({\sf V}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}}) = [(2{\sf V} - ({\sf O}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}})] \ ^{*} \ ({\sf V}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}})] \ ^{*} \ ^{*} \ ({\sf V}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}}) = [(2{\sf V} - ({\sf O}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}})] \ ^{*} \ ^{*} \ ({\sf V}_{{\sf CC}_{-}{\sf MAX}} - {\sf V}_{{\sf OH}_{-}{\sf MAX}})] \ ^{*} \$

 $\begin{array}{l} {\sf Pd_L} = [({\sf V}_{{\sf OL_MAX}} - ({\sf V}_{{\sf CC_MAX}} - 2{\sf V}))/{\sf R}_L] * ({\sf V}_{{\sf CC_MAX}} - {\sf V}_{{\sf OL_MAX}}) = [(2{\sf V} - ({\sf V}_{{\sf CC_MAX}} - {\sf V}_{{\sf OL_MAX}}))/{\sf R}_L] * ({\sf V}_{{\sf CC_MAX}} - {\sf V}_{{\sf OL_MAX}}) = [(2{\sf V} - 1.7{\sf V})/50\Omega] * 1.7{\sf V} = \textbf{10.2mW} \end{array}$

Total Power Dissipation per output pair = Pd_H + Pd_L = **30mW**

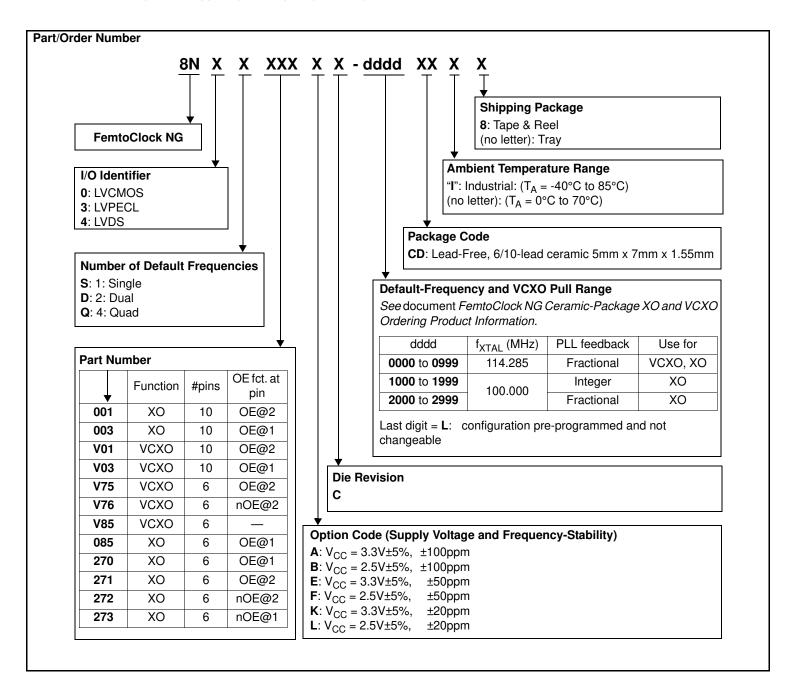
Reliability Information


Table 7. θ_{JA} vs. Air Flow Table for a 6-lead Ceramic 5mm x 7mm Package

θ_{JA} vs. Air Flow				
Meters per Second	0	1	2	
Multi-Layer PCB, JEDEC Standard Test Boards	49.4°C/W	44.2°C/W	42.1°C/W	

Transistor Count

The transistor count for IDT8N3DV85 is: 47,511


SYMBOL	DIMENSION IN MM			
STNIDOL	MIN.	NOM.	MAX.	
А	4.85	5.00	5.15	
В	6.85	7.00	7.15	
С	1.35	1.50	1.65	
D ₁	2.41	2.54	2.67	
D ₂	4.95	5.08	5.21	
Е	2.47	2.6	2.73	
F	0.47	0.60	0.73	
G	1.27	1.40	1.53	
Н	-	0.15 Ref.	-	
J	-	0.65 Ref.	-	

Ordering Information for FemtoClock® NG Ceramic-Package XO and VCXO Products

The programmable VCXO and XO devices support a variety of devices options such as the output type, number of default frequencies, internal crystal frequency, power supply voltage, ambient temperature range and the frequency accuracy. The device options, default frequencies and default VCXO pull range must be specified at the time of order and are programmed by IDT before the shipment. The table below specifies the available order codes, including the device options and default frequency configurations. Example part number: the order code 8N3QV01FG-0001CDI specifies a programmable, quad default-frequency VCXO with a voltage supply of 2.5V, a LVPECL output, a \pm 50 ppm crystal frequency accuracy,

contains a 114.285MHz internal crystal as frequency source, industrial temperature range, a lead-free (6/6 RoHS) 6-lead ceramic 5mm x 7mm x 1.55mm package and is factory-programmed to the default frequencies of 100MHz, 122.88MHz, 125MHz and 156.25MHz and to the VCXO pull range of minimum \pm 100 ppm.

Other default frequencies and order codes are available from IDT on request. For more information on available default frequencies, see the *FemtoClock N Ceramic-Package XO and VCXO Ordering Product Information* document.

Table 8. Device Marking

	Industrial Temperature Range (T _A = -40°C to 85°C)	Commercial Temperature Range ($T_A = 0^{\circ}C$ to 70°C)	
Marking	IDT8N3DV85 y C-	IDT8N3DV85 y C-	
Marking	ddddCDI	ddddCD	
	y = Option Code, dddd=Default-Frequency and VCXO Pull Range		

Revision History Sheet

Rev	Table	Page	Description of Change	Date
		6	Absolute Maximum Rating - corrected Package Thermal Impedance.	
		12	Added RMS Period Jitter diagram	
A	T6	14	Power Considerations - corrected Thermal Resistance table, updated Junction Temperature calculation.	4/27/12
	T7	13	Corrected Air Flow table.	
А	AMR	6	Absolute Maximum Rating; V _{CC} = 3.71V	2/5/13
А	T5A	7	AC Characteristic Tables - RMS Phase Jitter changed test conditions from: $500MHz \le f_{OUT}$ to $500MHz < f_{OUT}$; $125MHz \le f_{OUT}$ to $125MHz < f_{OUT}$.	10/30/13

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. **Contact Information**

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>