

Typical Applications

Microwave Radio & VSAT

Telecom Infrastructure

• Military & Space

· Fiber optics

Test Instrumentation

The HMC994LP5E is ideal for:

v01.0314

HMC994LP5E

GaAs pHEMT MMIC POWER AMPLIFIER, DC - 28 GHz

Features

P1dB Output Power: +27 dBm Psat Output Power: +29 dBm High Gain: 13 dB Output IP3: +38 dBm Supply Voltage: Vdd = +10V @ 250 mA 50 Ohm Matched Input/Output 32 Lead 5x5 mm SMT Package: 25 mm²

General Description

The HMC994LP5E is a GaAs pHEMT MMIC Distributed Wideband Power Amplifier which operates between DC and 28 GHz. The amplifier provides 13 dB of gain, +29 dBm of saturated output power, and 23% PAE from a +10V supply. With up to +38 dBm Output IP3 the HMC994LP5E is ideal for high linearity applications in military and space as well as point-to-point and pointto-multi-point radios. The HMC994LP5E exhibits a very flat gain from 4 to 16 GHz making it ideal for EW, ECM, Radar and test equipment applications. The HMC994LP4E amplifier I/Os are internally matched to 50 Ohms and is packaged in a leadless QFN 5x5 mm surface mount package.

Functional Diagram ACG2 ACG1 N/C N/C 29 31 30 28 27 26 25 <u>∕24</u> N/C GND 1Vgg2 2 23 N/C N/C ____22 GND 3 RFOUT GND 4 21 & Vdd ____20 RFIN GND 5 N/C GND 6 _ 19 N/C 7 18 N/C N/C 8/ J7 N/C 1 14 5 2 2 13 6 N/C Vgg1 V/C N/C GND ACG4 ACG3 PACKAGE BASE GND

Electrical Specifications, $T_A = +25^{\circ}$ C, Vdd = +10V, Vgg2 = +3.5V Idd = 250 mA^[1]

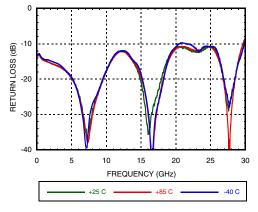
Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур	Max.	Units
Frequency Range	DC - 10		10 - 20		20 - 28		GHz			
Gain	11	13		11	13		11	13		dB
Gain Flatness		±0.5			±0.5			±0.5		dB
Gain Variation Over Temperature		0.008			0.011			1.016		dB/ °C
Input Return Loss		18			15			12		dB
Output Return Loss		18			16			12		dB
Output Power for 1 dB Compression (P1dB)	26	28		24.5	27		22.5	25		dBm
Saturated Output Power (Psat)		30			29.5			28		dBm
Output Third Order Intercept (IP3) [2]		41			37			35		dBm
Noise Figure		4			4			5		dB
Total Supply Current		250	300		250	300		250	300	mA

[1] Adjust Vgg1 between -2 to 0V to achieve Idd = 250 mA typical.

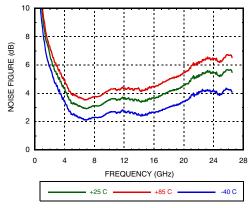
[2] Measurement taken at Pout / tone = +16 dBm.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

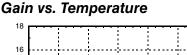
1

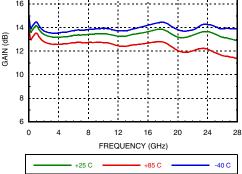


ROHS V

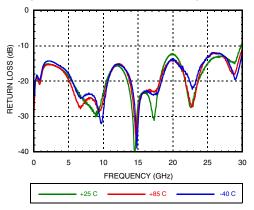

v01.0314

Gain & Return Loss 20 10 RESPONSE (dB) 0 -10 -20 -30 -40 35 0 5 10 15 25 30 40 20 FREQUENCY (GHz) S22 S21 S11

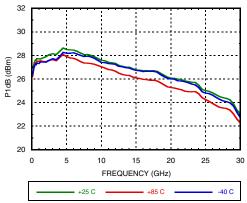

Input Return Loss vs. Temperature



Noise Figure vs. Temperature

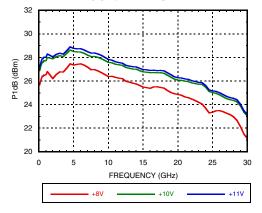


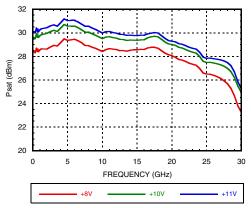
GaAs pHEMT MMIC POWER AMPLIFIER, DC - 28 GHz

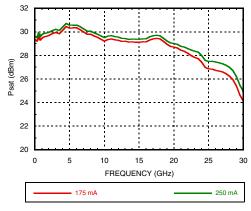


Output Return Loss vs. Temperature

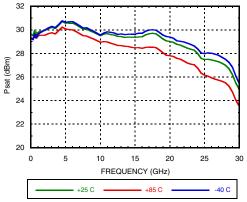
AMPLIFIERS - LINEAR & POWER - SMT


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

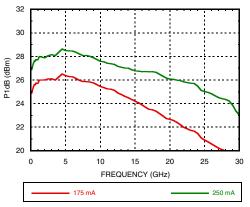

v01.0314

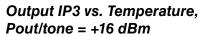

P1dB vs. Supply Voltage

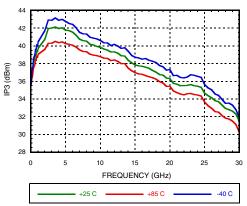
Psat vs. Supply Voltage



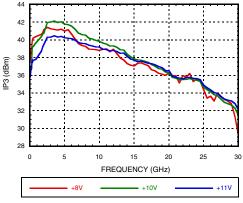
Psat vs. Supply Current

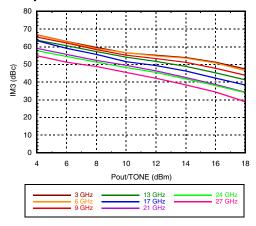


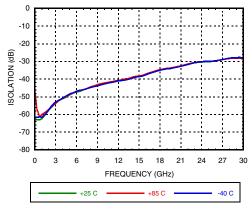




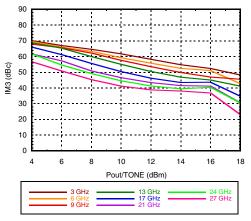
P1dB vs. Supply Current


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

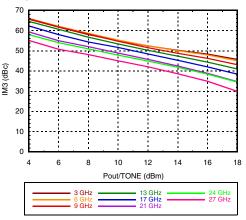

v01.0314


Output IP3 vs. Supply Voltage, Pout/tone = +16 dBm

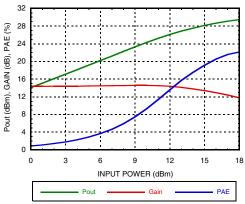
Output IM3 @ Vdd =+10V



Reverse Isolation vs. Temperature

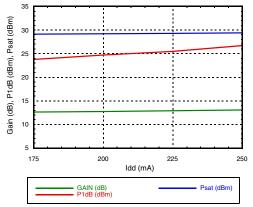


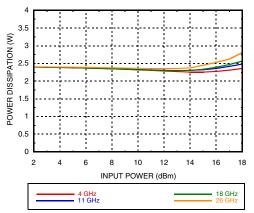
GaAs pHEMT MMIC POWER AMPLIFIER, DC - 28 GHz

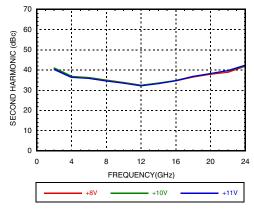

Output IM3 @ Vdd = +8V

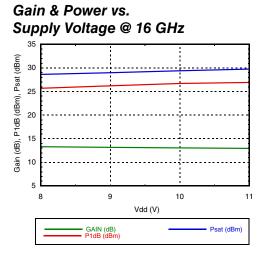
Output IM3 @ Vdd = +11V

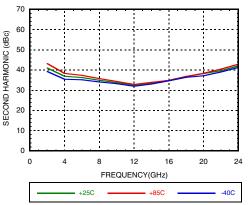
Power Compression @ 16 GHz

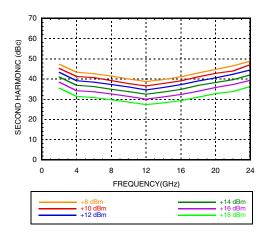

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


v01.0314


Gain & Power vs. Supply Current @ 16 GHz


Power Dissipation


Second Harmonics vs. Vdd @ Pout = 14 dBm


GaAs pHEMT MMIC POWER AMPLIFIER, DC - 28 GHz

Second Harmonics vs. Temperature @ Pout = 14 dBm

Second Harmonics vs. Pout

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.0314

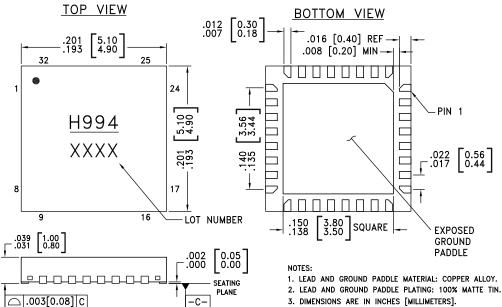
Absolute Maximum Ratings

	-
Drain Bias Voltage (Vdd)	+12 Vdc
Gate Bias Voltage (Vgg1)	-3 to 0 Vdc
	For Vdd = 12V, Vgg2 = 5.5V Idd < 200mA
Gate Bias Voltage (Vgg2)	For Vdd between 8.5V to 11V, Vgg2 = (Vdd - 6.5V) up to 4.5V
	For Vdd < 8.5V, Vgg2 must remain > 2V
RF Input Power (RFIN)	+25 dBm
Channel Temperature	150 °C
Continuous Pdiss (T= 85 °C) (derate 46.1 mW/°C above 85 °C)	3.0 W
Thermal Resistance (channel to ground paddle)	21.6 °C/W
Storage Temperature	-65 to 150°C
Operating Temperature	-55 to 85 °C
ESD Sensitivity (HBM)	Class 1A

GaAs pHEMT MMIC **POWER AMPLIFIER, DC - 28 GHz**

HMC994LP5E

Typical Supply Current vs. Vdd


Vdd (V)	ldd (mA)
+8	250
+9	250
+10	250
+11	250

Adjust Vgg1 to achieve Idd = 250 mA

ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

Outline Drawing

- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PAD BURR LENGTH SHALL BE 0.15mm MAX. PAD BURR HEIGHT SHALL BE 0.25mm MAX.
- 6. PACKAGE WARP SHALL NOT EXCEED 0.05mm
- 7. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Package Information

<u> </u>				
Part Number	Package Body Material	Lead Finish	MSL Rating ^[2]	Package Marking ^[1]
HMC994LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1	<u>H994</u> XXXX

[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

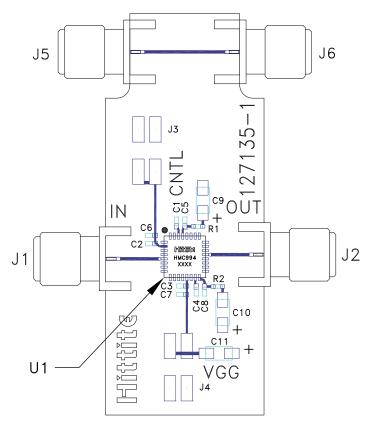
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.0314

GaAs pHEMT MMIC POWER AMPLIFIER, DC - 28 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1, 4, 6, 14, 20, 22, Package Bottom	GND	These pins & exposed ground paddle must be con- nected to RF/DC ground.		
2	VGG2	Gate control 2 for amplifier. Attach bypass capacitor per application circuit herein. For nominal operation +3.5V should be applied to Vgg2	VGG2O	
3, 7, 8, 9, 10, 11, 12, 17, 18, 19, 23, 24, 25, 26, 27, 28, 31, 32	N/C	No connection required. These pins may be con- nected to RF/DC ground without affecting perfor- mance.		
5	RFIN	This pin is DC coupled and matched to 50 Ohms. Blocking capacitor is required.		
13	Vgg1	Gate control 1 for amplifier. Attach bypass capacitor per application circuit herein. Please follow "MMIC Amplifier Biasing Procedure" application note.		
15	ACG4	Low Frequency termination. Attach bypass capacitor	IN 0	
16	ACG3	per application circuit herein.		
21	RFOUT & Vdd	RF output for amplifier. Connect DC bias (Vdd) net- work to provide drain current (Idd). See application circuit herein.		
29	ACG2	Low frequency termination. Attach bypass capacitor	ACG2O	
30	ACG1	per application circuit herein	±	



v01.0314

GaAs pHEMT MMIC POWER AMPLIFIER, DC - 28 GHz

Evaluation PCB

Evaluation Order Information

Item	Contents	Part Number
Evaluation PCB Only	HMC994LP5E Evaluation PCB	Eval01-HMC994LP5E ^[1]

[1] Reference this number when ordering Evaluation PCB Only

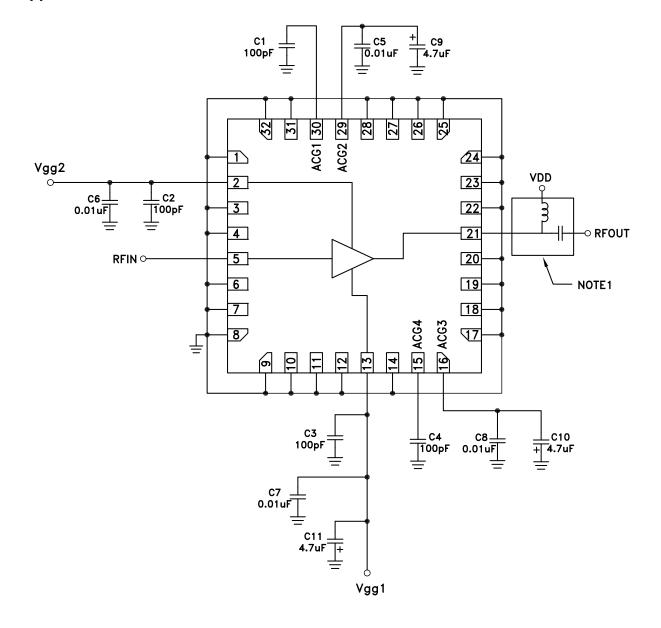
List of Materials for Evaluation PCB EVAL01-HMC994LP5E

Item	Description
J1, J2, J5, J6	PCB Mount SMA RF Connector
J3, J4	DC Pins.
C1 - C4	1000 pF Capacitor, 0402 Pkg.
C5 - C8	10 kpF Capacitor, 0402 Pkg.
C9 - C11	4.7 uF Capacitor, Tantalum.
R1, R2	0 Ohm Resistor, 0402 Pkg.
U1	HMC994LP5E
PCB ^[1]	127135 Evaluation PCB.

[1] Circuit Board Material: Rogers 4350 or Arlon 25FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


Application Circuit

HMC994LP5E

v01.0314

GaAs pHEMT MMIC POWER AMPLIFIER, DC - 28 GHz

NOTE 1: Drain Bias (Vdd) must be applied through a broadband bias tee or external bias network.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v01.0314

Notes

GaAs pHEMT MMIC POWER AMPLIFIER, DC - 28 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.