I2C Bus Transceiver

JLC1563 is an I2C-bus signal transceiver and "conditioner". Currently, systems complexity and I2C-bus device types and functionality are only increasing. As a result of I2C-bus loading the Clock line and Data line signals degrade. The JLC1563 I2C-Bus Transceiver restores clean signals in the system leading to improvements in system performance and reliability.

This device has two pins, SCL1 (Serial Clock Input) and SDA1 (Serial Data I/O), on the Master I2C-bus side; and two pins, SCL2 (Serial Clock Output) and SDA2 (Serial Data I/O), on the Slave I2C-bus side.

Two reset pins, Reset1 and Reset2, drive separate internal comparators and a system Power–On–Reset function is supported.

Features

- Low Power Dissipation
- Two Pin Reset/Power-On-Reset
- Waveform Cleaning

ON Semiconductor

http://onsemi.com

HIGH-PERFORMANCE CMOS

LOW-POWER COMPLEMENTARY
MOS SILICON-GATE

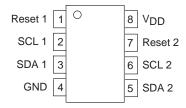
MARKING DIAGRAMS

PDIP-8 P SUFFIX CASE 626

SOEIAJ-8 M SUFFIX CASE 968

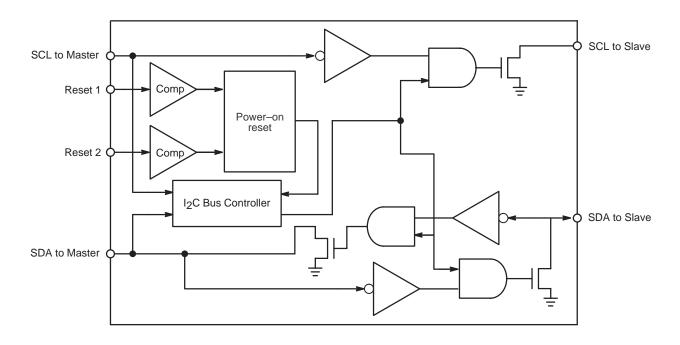
A = Assembly Location

WL, L = Wafer Lot YY, Y = Year WW, W = Work Week


ORDERING INFORMATION

Device	Package	Shipping
JLC1563P	PDIP-8	50 Units/Rail
JLC1563M	SOEIAJ-8	See Note 1.
JLC1563ML1	SOEIAJ-8	See Note 1.

 For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative.


PIN CONNECTIONS

CASE 626/968

PIN LIST				
SCL 1	MASTER Serial Clock			
SCL 2	SLAVE Serial Clock			
SDA 1	MASTER Serial Data			
SDA 2	SLAVE Serial Data			
Reset 1	Reset Input 1 (Active Low)			
Reset 2	Reset Input 2 (Active Low)			

BLOCK DIAGRAM

$\textbf{MAXIMUM RATINGS} \; (V_{SS} \; \text{Reference})$

Rating	Symbol	Value	Unit
DC Supply Voltage	V _{DD}	-0.5 to +7.0	V
DC Input Voltage	V _{in}	-0.5 to V _{DD} + 0.5	V
DC Output Voltage	V _{out}	-0.5 to V _{DD} + 0.5	V
DC Input Output Current (per Pin)	I	25	mA
DC Supply Current (V _{DD} and GND Pin)	l _{dd}	75	mA
Storage Temperature	T _{stg}	-65 to +150	°C
Lead Temperature (1 mm from case for 10 sec)	TL	300	°C

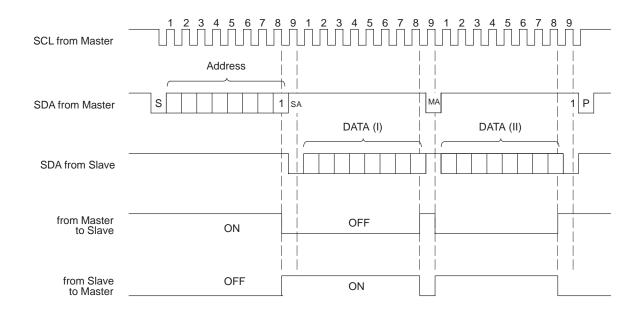
RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
DC Supply Voltage	V _{DD}	4.0	6.0	V
DC Input Voltage	V _{in}	0.0	V _{DD}	V
Operating Temperature	TA	-40	+85	°C

$\textbf{DC CHARACTERISTICS} \; (\textbf{V}_{SS} \; \textbf{Reference})$

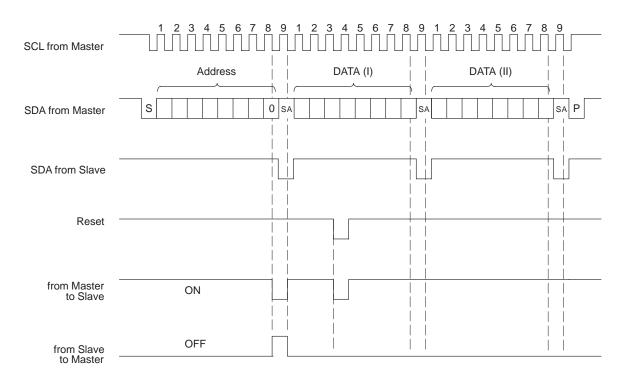
		Guaranteed Limits		
Characteristic	Symbol	Min	Max	Unit
Input Voltage "H" Level	VIH	0.7 V _{DD}	-	V
Input Voltage "L" Level	VIL	-	0.3 V _{DD}	V
Output Voltage "L" Level I _{out} = 4 mA	VOL	-	0.3	V
Input Leakage Current Vin = VDD or VSS	lin	-	±1.0	μА
Tri–State Leakage Current Output = High Impedance; Vout = GND	l _{oz}	-	±5.0	μА
Offset Voltage (Reset 1, Reset 2)	VIO	-	± 0.1	V
Input Pin Capacitance	C _{in}	-	10	pF
Output Pin Capacitance	C _{out}	-	15	pF
In/Out Pin Capacitance	C _{i/O}	-	15	pF
Quiescent Supply Current (per package)	I _{cc}	_	5.0	mA

APPLICATION BLOCK

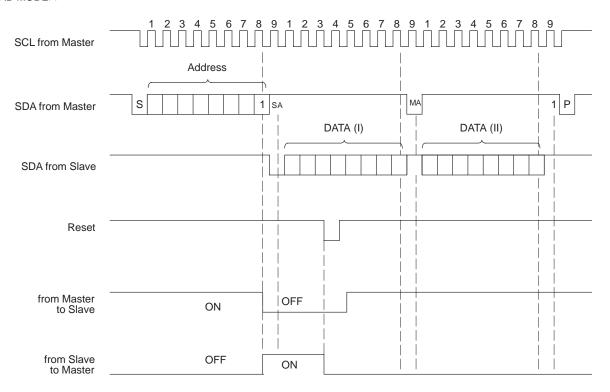


I₂C BUS TRANSCEIVER SIGNALS

SCL from Master 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 SDA from Master SDA from Slave from Master to Slave ON


I₂C BUS TRANSCEIVER SIGNALS

<<READ MODE>>

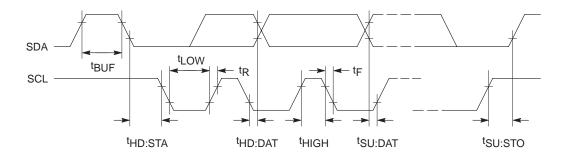

I₂C BUS TRANSCEIVER SIGNALS (during RESET)

<<WRITE MODE>>

I₂C BUS TRANSCEIVER SIGNALS (during RESET)

<<READ MODE>>

BUS CONDITION KEY:

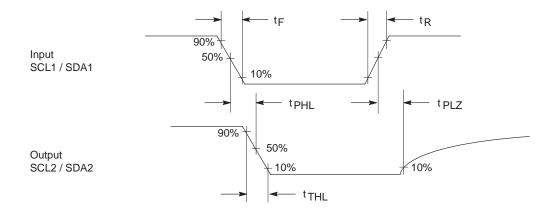

S = START

SA = SLAVE ACKNOWLEDGE
MA = MASTER ACKNOWLEDGE

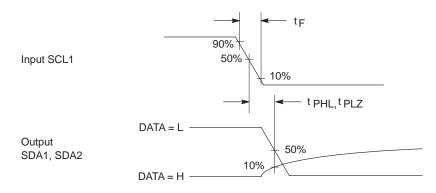
P = STOP

I2C BUS STANDARDS (See Switching Chart for actual device parameters)

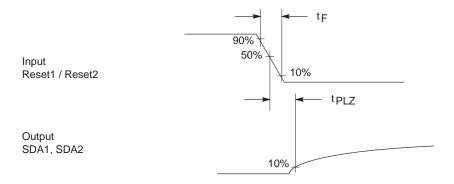
		Guaranteed Limits		
Parameter	Symbol	Min	Max	Unit
SCL Clock Frequency	fCL	0	100	kHz
STOP Condition to START Condition Bus Free Time	^t BUF	4.7	-	μs
START Condition Hold Time	tHD:STA	4.0	-	μs
SCL Clock LOW Hold Time	tLOW	4.7	-	μs
SCL Clock HI Hold Time	tHIGH	4.0	-	μs
SDA Data Hold Time	tHD:DAT	0	-	μs
SDA Data Setup Time	tSU:DAT	250	-	nS
SDA and SCL Signal Rise Time	t _R	_	1000	nS
SDA and SCL Signal Fall Time	tF	-	300	nS
STOP Condition Setup Time	tsu:sto	4.0	-	μs

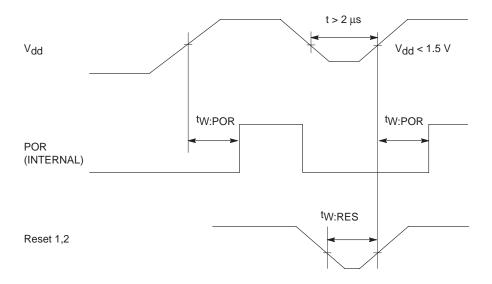

SWITCHING CHART ($V_{CC} = 5.0 \text{ V}$, $t_R = 1000 \text{ nS}$, $t_F = 300 \text{ nS}$)

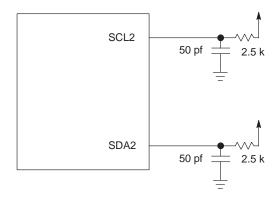
		Nominal	Guarante	ed Limits	
Parameter	Symbol	25°C	Min	Max	Unit
Maximum Delay SCL1 to SCL2	tPHL:SCL	-	-	500	nS
Maximum Delay SCL1 to SCL2	tPLZ:SCL	-	_	500	nS
Maximum Delay SDA1 to SDA2	tPHL:SDA	-	_	500	nS
Maximum Delay SDA1 to SDA2	tPLZ:SDA	-	-	500	nS
Maximum Delay SCL1 to SDA1,2 (Direction Change DATA = L)	tPHL:SCL-SDA	_	_	500	nS
Maximum Delay SCL1 to SDA1,2 (Direction Change DATA = H)	^t PLZ:SCL-SDA	-	-	500	nS
Maximum Delay Reset to SDA1,2	tPLZ:RES	-	_	500	nS
Maximum Output Fall Time SCL	tTHL:SCL	5.0	-	20	nS
Maximum Output Rise Time SDA	tTHL:SDA	5.0	-	20	nS
Maximum Group Delay tPHL:SCL-tPHL:SDA	[†] PHL	1.0	-	10	nS
Maximum Group Delay tPLZ:SCL-tPLZ:SDA	tPLZ	1.0	-	10	nS
Power On Reset Pulse Width	tw:ror	1500	-	-	nS


TIMING CONDITIONS $(V_{DD} = 5.0 \text{ V})$

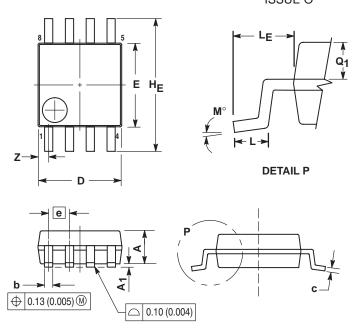
			Nominal	Guaranteed Limits		
Paramete	er	Symbol	25°C	Min	Max	Unit
Minimum Pulse Width	Reset	tW:RES	-	50	-	nS


(1) t PHL:SCL, t PLZ:SCL, t PHL:SDA, t PLZ:SDA, t THL:SCL, t THL:SDA


(2) tPHL:SCL-SDA, tPLZ:SCL-SDA


(3) tPLZ:RES

(4) tw:por, tw:res



TEST CIRCUIT

PACKAGE DIMENSIONS

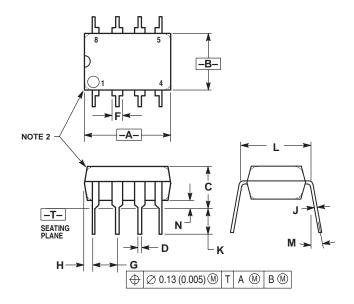
SOEIAJ-8 **M SUFFIX** CASE 968-01 **ISSUE O**

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER


 3. DIMENSION DAND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)
- PER SIDE.

 4. TERMINAL NUMBERS ARE SHOWN FOR
- REFERENCE ONLY.

 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIN	MILLIMETERS		HES
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
Α1	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
С	0.18	0.27	0.007	0.011
D	5.10	5.50	0.201	0.217
Е	5.10	5.45	0.201	0.215
е	1.27	BSC	0.050	BSC
ΗE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LΕ	1.10	1.50	0.043	0.059
M	0°	10°	0°	10°
Q ₁	0.70	0.90	0.028	0.035
Z		0.94		0.037

PDIP-8 **P SUFFIX** CASE 626-05 ISSUE K

NOTES:

- DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.
- 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS).
- 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLIN	METERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.40	10.16	0.370	0.400	
В	6.10	6.60	0.240	0.260	
С	3.94	4.45	0.155	0.175	
D	0.38	0.51	0.015	0.020	
F	1.02	1.78	0.040	0.070	
G	2.54	BSC	0.100 BSC		
Н	0.76	1.27	0.030	0.050	
J	0.20	0.30	0.008	0.012	
K	2.92	3.43	0.115	0.135	
L	7.62	7.62 BSC		BSC	
M		10°		10°	
N	0.76	1.01	0.030	0.040	

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)
Email: ONlit–french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, England, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031

Phone: 81–3–5740–2745 **Email**: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.