

Enhanced Product

FEATURES

Superb clamping characteristics 3 mV clamp error 1.5 ns overdrive recovery Minimized nonlinear clamping region 240 MHz clamp input bandwidth ±3.9 V clamp input range Wide bandwidth Small signal: 270 MHz Large signal (4 V p-p): 190 MHz Good dc characteristics 2 mV offset 10 uV/°C drift Ultralow distortion, low noise -72 dBc typical at 20 MHz 4.5 nV/√Hz input voltage noise **High speed** Slew rate 1500 V/µs Settling 10 ns to 0.1%, 16 ns to 0.01% ±3 V to ±5 V supply operation

ENHANCED PRODUCT FEATURES

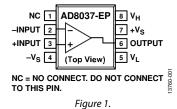
Supports defense and aerospace applications (AQEC standard) Extended industrial temperature range: -55°C to +105°C Controlled manufacturing baseline One assembly/test site One fabrication site Product change notification Qualification data available on request APPLICATIONS ADC buffer IF/RF signal processing High quality imaging Broadcast video systems Video amplifier

Full wave rectifier

GENERAL DESCRIPTION

The AD8037-EP is a wide bandwidth, low distortion clamping amplifier. The AD8037-EP is stable at a gain of two or greater. This device allows the designer to specify a high (V_{CH}) and low (V_{CL}) output clamp voltage. The output signal clamps at these specified levels. Utilizing a unique patent pending CLAMPINGTM input clamp architecture, the AD8037-EP offers a 10× improvement in clamp performance compared to traditional output clamping devices. In particular, clamp error is typically 3 mV or less and distortion in the clamp region is minimized. This product can be used as a classical op amp or clamp amplifier.

Rev. 0


Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Low Distortion, Wide Bandwidth Voltage Feedback Clamp Amp

AD8037-EP

FUNCTIONAL BLOCK DIAGRAM

The AD8037-EP, which utilizes a voltage feedback architecture, meets the requirement of many applications which previously depended on current feedback amplifiers. The AD8037-EP exhibits an exceptionally fast and accurate pulse response (16 ns to 0.01%), extremely wide small-signal and large-signal bandwidths and ultralow distortion. The AD8037-EP recovers from 2× clamp overdrive within 1.5 ns. These characteristics position the AD8037-EP ideally for driving as well as buffering flash and high resolution ADCs.

In addition to traditional output clamp amplifier applications, the input clamp architecture supports the clamp levels as additional input to the amplifier. As such, in addition to static dc clamp levels, signals with speeds up to 240 MHz can be applied to the clamp pins. The clamp values can be set to any value within the output voltage range provided that V_H is greater than V_L . Due to these clamp characteristics, the AD8037-EP can be used in nontraditional applications such as a full wave rectifier, a pulse generator, or an amplitude modulator. These novel applications are only examples of some of the diverse applications which can be designed with input clamps.

Additional application and technical information can be found in the AD8037 data sheet.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2016 Analog Devices, Inc. All rights reserved. Technical Support www.analog.com

TABLE OF CONTENTS

Features	1
Enhanced Product Features	1
Applications	1
General Description	1
Functional Block Diagram	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	5

Maximum Power Dissipation	Thermal Resistance	5
Pin Configurations and Function Descriptions6 Typical Performance Characteristics Outline Dimensions	Maximum Power Dissipation	5
Typical Performance Characteristics	ESD Caution	5
Outline Dimensions	Pin Configurations and Function Descriptions	6
	Typical Performance Characteristics	7
Ordering Guide	Outline Dimensions	8
	Ordering Guide	8

REVISION HISTORY

6/2016—Revision 0: Initial Version

SPECIFICATIONS

 $V_{\text{S}}=\pm5$ V, $R_{\text{L}}=100~\Omega,$ gain = +2, $V_{\text{H}},$ V_{L} open unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Min	Min Typ		Unit	
DYNAMIC PERFORMANCE						
Bandwidth (–3 dB)						
Small Signal	$V_{OUT} \le 0.4 V p-p$	200	270		MHz	
Large Signal ¹	V _{OUT} = 3.5 V p-p	160	190		MHz	
Bandwidth for 0.1 dB Flatness	$V_{OUT} \le 0.4 \text{ V p-p}, R_F = 274 \Omega$		130		MHz	
Slew Rate, Average ±	$V_{OUT} = 4 V \text{ step}, 10\% \text{ to } 90\%$	1100	1500		V/µs	
Rise/Fall Time	V _{OUT} = 0.5 V step, 10% to 90%		1.2		ns	
	$V_{OUT} = 4 V \text{ step}, 10\% \text{ to } 90\%$		2.2		ns	
Setting Time						
To 0.1%	$V_{OUT} = 2 V step$		10		ns	
To 0.01%	$V_{OUT} = 2 V \text{ step}$		16		ns	
NOISE/HARMONIC PERFORMANCE	V001 - 2 V Step		10		115	
Second Harmonic Distortion	2 V p-p, 20 MHz, R _L = 100 Ω		-52	-45	dBc	
Second Harmonic Distortion	$R_{L} = 500 \Omega$		-32 -72	-43 -65	dBc	
Third Harmonic Distortion	2 V p-p, 20 MHz, $R_L = 100 \Omega$		-70	-63	dBc	
	$R_L = 500 \Omega$		-80	-73	dBc	
Third-Order Intercept	25 MHz		41		dBm	
Noise Figure	$R_s = 50 \Omega$		14		dB	
Input Voltage Noise	1 MHz to 200 MHz		4.5		nV/√Hz	
Input Current Noise	1 MHz to 200 MHz		2.1		pA/√Hz	
Average Equivalent Integrated Input Noise Voltage	0.1 MHz to 200 MHz		60		μV rms	
Differential Gain Error (3.58 MHz)	$R_L = 150 \ \Omega$		0.02	0.04	%	
Differential Phase Error (3.58 MHz)	$R_L = 150 \ \Omega$		0.02	0.04	Degrees	
Phase Nonlinearity	DC to 100 MHz		1.1		Degrees	
CLAMP PERFORMANCE						
Clamp Voltage Range ¹	V_{CH} or V_{CL}	±3.3	±3.9		V	
Clamp Accuracy	$2 \times$ overdrive, $V_{CH} = 2 V$, $V_{CL} = -2 V$		±3	±10	mV	
				±20	mV	
Clamp Nonlinearity Range ²			100		mV	
Clamp Input Bias Current (V_H or V_L)	$V_{H}, V_{L} = \pm 0.5 V$		±50	±70	μA	
				±90	μΑ	
Clamp Input Bandwidth (–3 dB)	V_{CH} or $V_{CL} = 2 V p - p$	180	270		MHz	
Clamp Overshoot	$2 \times \text{ overdrive}, V_{CH} \text{ or } V_{CL} = 2 \text{ V p-p}$	100	1	5	%	
Overdrive Recovery	2× overdrive		1.3	5	ns	
DC PERFORMANCE ³ , $R_L = 150 \Omega$			1.5		115	
Input Offset Voltage ⁴			2	7	mV	
input Onset voltage	T to T		Z			
Offerst Vieltere Dwift	T _{MIN} to T _{MAX}		. 10	10	mV	
Offset Voltage Drift			±10	0	μV/°C	
Input Bias Current			3	9	μA	
	T _{MIN} to T _{MAX}		_	15	μA	
Input Offset Current			0.1	3	μA	
	T _{MIN} to T _{MAX}			5	μΑ	
Common-Mode Rejection Ratio	$V_{CM} = \pm 2 V$	70	90		dB	
Open-Loop Gain	$V_{OUT} = \pm 2.5 V$	54	60		dB	
	T _{MIN} to T _{MAX}	46			dB	

AD8037-EP

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS					
Input Resistance			500		kΩ
Input Capacitance			1.2		pF
Input Common-Mode Voltage Range			±2.5		V
OUTPUT CHARACTERISTICS					
Output Voltage Range, $R_L = 150 \Omega$		±3.2	±3.9		V
Output Current		70		mA	
Output Resistance			0.3		Ω
Short Circuit Current			240		mA
POWER SUPPLY					
Operating Range		±3.0	±5.0	±6.0	V
Quiescent Current			18.5	19.5	mA
	T _{MIN} to T _{MAX}			24	mA
Power Supply Rejection Ratio	T _{MIN} to T _{MAX}	56	66		dB

¹ See the Absolute Maximum Ratings section. ² Nonlinearity is defined as the voltage delta between the set input clamp voltage (V_H or V_L) and the voltage at which V_{OUT} starts deviating from V_{IN} . ³ Measured at $A_V = 50$. ⁴ Measured with respect to the inverting input

ABSOLUTE MAXIMUM RATINGS

Table 2.

1 doic 2.	
Parameter	Rating
Supply Voltage	12.6 V
Power Dissipation	See Figure 2
Voltage Swing × Bandwidth Product	350 V-MHz
Common-Mode Input Voltage	±Vs
$ V_H - V_{IN} $	≤6.3 V
$ V_L - V_{IN} $	≤6.3 V
Differential Input Voltage	±1.2 V
Storage Temperature Range	–65°C to +125°C
Operating Temperature Range	–55°C to +105°C
Lead Temperature (Soldering, 10 sec)	300°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

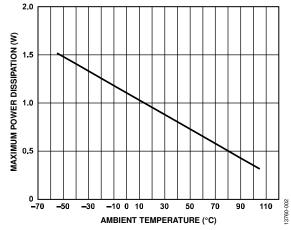
Table 3. Thermal Resistance

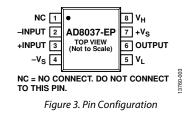
Package Type	θ _{JA}	Unit
R-8	155	°C/W

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated by these devices is limited by the associated rise in junction temperature. The maximum safe junction temperature for plastic encapsulated devices is determined by the glass transition temperature of the plastic, approximately 150°C. Exceeding this limit temporarily may cause a shift in parametric performance due to a change in the stresses exerted on the die by the package. Exceeding a junction temperature of 175°C for an extended period can result in device failure.

Although the AD8037-EP is internally short-circuit protected, this may not be sufficient to guarantee that the maximum junction temperature (150°C) is not exceeded under all conditions. To ensure proper operation, it is necessary to observe the maximum power derating curves.




Figure 2. Maximum Power Dissipation vs. Ambient Temperature

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	NC	No Connect
2	-INPUT	Inverting Input
3	+INPUT	Noninverting Input
4	$-V_s$	Negative Supply
5	VL	Low Clamping Voltage
6	OUTPUT	Output
7	+Vs	Positive Supply
8	V _H	High Clamping Voltage

TYPICAL PERFORMANCE CHARACTERISTICS

 $V_s = \pm 5 \text{ V}$, $R_L = 150 \Omega$, $T_A = -55^{\circ}\text{C}$ to $+105^{\circ}\text{C}$, unless otherwise noted.

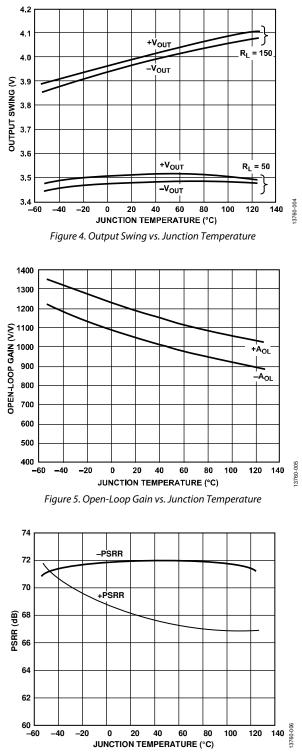


Figure 6. PSRR vs. Junction Temperature

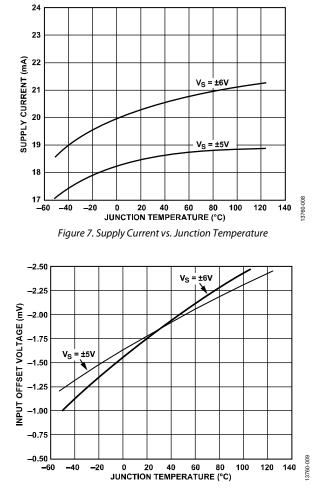
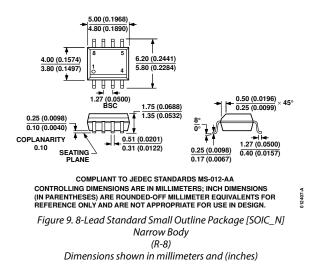



Figure 8. Input Offset Voltage vs. Junction Temperature

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
AD8037SRZ-EP	-55°C to +105°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8
AD8037SRZ-EP-R7	-55°C to +105°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8

¹ Z = RoHS Compliant Part.

www.analog.com