Capacitor Array (IPC)

BENEFITS OF USING CAPACITOR ARRAYS

KYOCERA AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements.

Reduced Costs

Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc.

Space Saving

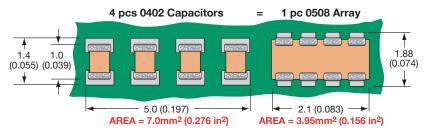
Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs. 4×0402 discrete capacitors and of >70% vs. 4×0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.)

Increased Throughput

Assuming that there are 220 passive components placed in a mobile phone:

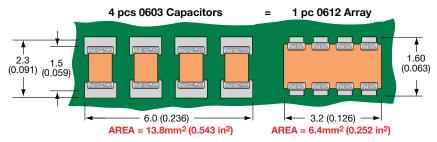
A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%.

A reduction of 40 placements increases throughput by 18%.


For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components:

If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine.

During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine.


Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment.

W2A (0508) Capacitor Arrays

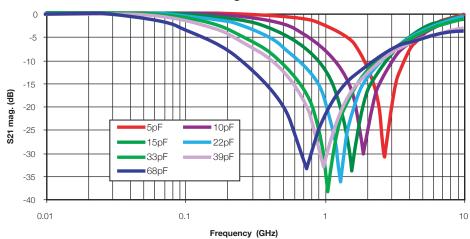
The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.

W3A (0612) Capacitor Arrays

The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.

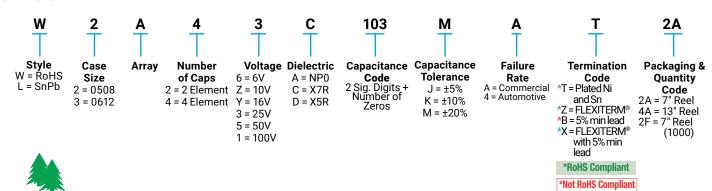
The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Capacitor Array (IPC)


GENERAL DESCRIPTION

KYOCERA AVX is the market leader in the development and manufacture of capacitor arrays. The array family of products also includes the 0612 4-element device as well as 0508 2-element and 4-element series, all of which have received widespread acceptance in the marketplace.

KYOCERA AVX capacitor arrays are available in X5R, X7R and NP0 (C0G) ceramic dielectrics to cover a broad range of capacitance values. Voltage ratings from 6.3 Volts up to 100 Volts are offered. KYOCERA AVX also now offers a range of automotive capacitor arrays qualified to AEC-Q200 (see separate table).


Key markets for capacitor arrays are Mobile and Cordless Phones, Digital Set Top Boxes, Computer Motherboards and Peripherals as well as Automotive applications, RF Modems, Networking Products, etc.

AVX Capacitor Array - W2A41A***K S21 Magnitude

HOW TO ORDER

RoHS COMPLIANT

NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.

S	IZE		W	2 = 050	08	W	3 = 061	w/Wave Embossed 1± 0.150 3± 0.006) 0± 0.20 6± 0.008) 1.35		
# Ele	ment	s		4			4			
	dering		Re	flow/Wa	ave	Re	flow/Wa	ve		
	kaqinq			er/Embos						
		mm		1.30 ± 0.1		1.	.60 ± 0.15	0		
Length		(in.)	(0.	051 ± 0.0	06)	(0.	063 ± 0.00	06)		
Width		mm (in.)		2.10 ± 0.1 083 ± 0.0		(0.	3.20 ± 0.20 126 + 0.00))		
Max.		mm	(0.	0.94	00)	(0.	1.35	<i>.</i> (0)		
Thickness		(in.)		(0.037)			(0.053)			
W	VDC		16	25	50	16	25	50		
1R0	Cap	1.0								
1R2	(pF)	1.2								
1R5		1.5								
1R8		1.8								
2R2		2.2								
2R7		2.7								
3R3		3.3								
3R9		3.9								
4R7		4.7								
5R6 6R8		5.6 6.8								
8R2		8.2								
100		10								
120		12								
150		15								
180		18								
220		22								
270		27								
330		33								
390		39								
470		47								
560		56								
680		68								
820		82								
101		100								
121		120								
151		150								
181		180								
221		220								
271 331		270 330								
331		390								
471		470								
561		560								
681		680								
821		820								
102		1000								
122		1200								
152		1500								
182		1800								
222		2200								
272		2700								
332		3300								
392		3900								
472		4700								
562		5600								
682		6800								
822		8200		l						

= Supported Values

	SIZE		_	N2 =	050	8			V	V2 =	050	8				V3 =	061	2	
#	Elements				2						555	-					4	_	
- 11	Soldering			Reflov				-			/Wav				_	Reflow			
	Packaging				aper						mboss					per/E			
	mm				± 0.15	5	-	1.30 ± 0.15					1.60 ± 0.150						
Lengtl	n (in.)		(0.051					(0		± 0.00			(0.063 ± 0.006)					
Width	mm				± 0.15						± 0.15						£ 0.20		
wiath	(in.)		(0.083	± 0.00	16)			(0	.083 :	± 0.00	6)			(0).126 :	£ 0.00	8)	
Max.	mm							0.	94					1.	35				
Thickr				(0.	037)					(0.0)37)					(0.0	153)		
	WVDC	6	10	16	25	50	100	6	10	16	25	50	100	6	10	16	25	50	100
	Cap (pF) 100																		
121	120																		
151	150																		
181	180																		
221	220																		
271	270																		
331	330	-	<u> </u>			<u> </u>													
391	390			_															
471	470																		
561	560	-	<u> </u>		<u> </u>	<u> </u>	-												
681	680	_																	
751 821	750 820																		
102	1000																		
122	1200																		
152	1500																		
182	1800																		\vdash
222	2000																		
272	2700																		
332	3300																		
392	3900																		
472	4700																		
562	5600																		
682	6800																		
822	8200																		
103	Cap (µF) 0.010																		
153	0.015																		
183	0.018																		
223	0.022																		
273	0.027																		
333	0.033																		
393	0.039																		
473	0.047																		
563	0.056																		
683	0.068																		\vdash
823	0.082																		\vdash
104	0.100											-	-					_	\vdash
154	0.150			_		_	_			_		_			_	_		_	\vdash
224 274	0.220				_	<u> </u>	_	_		_	_	_	_			<u> </u>	_	_	\vdash
334	0.270 0.330	-	-	 	-	-	-	-	-	-		-	-			-	-	 	\vdash
394	0.330			-		<u> </u>	<u> </u>	<u> </u>		_		<u> </u>				<u> </u>			\vdash
474	0.390	_				\vdash	_	-		_		_			-	\vdash			\vdash
564	0.560	-		-			-	-		-		-			1			-	\vdash
684	0.680	<u> </u>		-	<u> </u>	<u> </u>	 		<u> </u>	 		 	<u> </u>		-	<u> </u>	<u> </u>	-	\vdash
824	0.820	\vdash		\vdash	<u> </u>	 	 	 		\vdash		 	<u> </u>		 	 	<u> </u>	\vdash	\vdash
105	1.000		\vdash	<u> </u>			 		<u> </u>	_		 		\vdash				<u> </u>	\vdash
100	1.000	Ь	Ь		ь		ь		Ь		Ь	Ь	Ь	Ь			Ь		

Automotive Capacitor Array (IPC)

As the market leader in the development and manufacture of capacitor arrays KYOCERA AVX is pleased to offer a range of AEC-Q200 qualified arrays to compliment our product offering to the Automotive industry. Both the KYOCERA AVX 0612 and 0508 4-element capacitor array styles are qualified to the AEC-Q200 automotive specifications.

AEC-Q200 is the Automotive Industry qualification standard and a detailed qualification package is available on request. All KYOCERA AVX automotive capacitor array production facilities are certified to ISO/TS 16949:2002.

HOW TO ORDER

<u>w</u>	3	<u>A</u>	4	<u>Y</u>	<u>c</u>	<u>104</u>	K	4	<u>T</u>	2 A
Style W = RoHS L = SnPb	Case Size 2 = 0508 3 = 0612	Array	Number of Caps	Voltage Z = 10V Y = 16V 3 = 25V 5 = 50V 1 = 100V	Dielectric A = NP0 C = X7R F = X8R	Capacitance Code (In pF) Significant Digits + Number of Zeros e.g. 10µF=106	Capacitance Tolerance *J = $\pm 5\%$ *K = $\pm 10\%$ *M = $\pm 20\%$	Failure Rate 4 = Automotive	Terminations *T = Plated Ni and Sn *Z = FLEXITERM® B = 5% min lead X = FLEXITERM® with 5% min lead *RoHS Compliant	Packaging & Quantity Code 2A = 7" Reel 4A = 13" Reel 2F = 7" Reel (1000)

^{*}Contact factory for availability by part number for K = ±10% and J = ±5% tolerance.

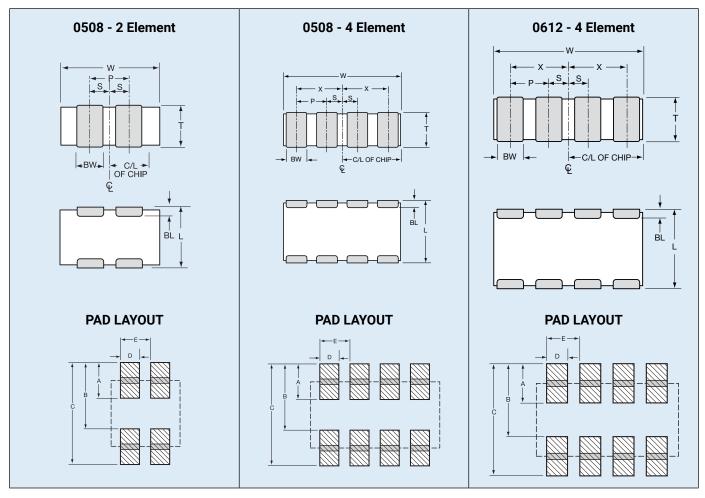
N I		^	10	00	i
N	μ	U),	/(:	u-	١

	SIZE		W	3 = 06	12
No. o	of Elemei	nts	Re	flow/Wa	ave
	WVDC		16	25	50
1R0	Сар	1.0			
1R2	(pF)	1.2			
1R5		1.5			
1R8		1.8			
2R2		2.2			
2R7 3R3		2.7			
3R3		3.9			
4R7		4.7			
5R6		5.6			
6R8		6.8			
8R2		8.2			
100		10			
120		12			
150		15			
180		18			
220		22			
270		27			
330		33			
390		39			
470		47			
560		56			
680		68			
820		82			
101 121		100 120			
151		150			
181		180			
221		220			
271		270			
331		330			
391		390			
471		470			
561		560			
681		680			
821		820			
102		1000			7
122		1200			
152		1500			
182		1800			
222		2200			
272		2700			
332 392		3300 3900			
472		4700			
562		5600		_	\vdash
682		6800			
822		8200			
ULL		0230			

X7R

	SIZE		W2 =	0508	3		W2 =	0508			W3 = 0612 4 10 16 25 50 100			
No.	of Elements			2			-	4				4		
	WVDC	16	25	50	100	16	25	50	100	10	16	25	50	100
101	Cap 100													
121	(pF) 120									1	1		1	
151	150													
181	180													
221	220													
271	270													
331	330													
391	390													
471	470													
561	560													
681	680													
821	820													
102	1000													
122	1200													
152	1500													
182	1800													
222	2200													
272	2700													
332	3300													
392	3900													
472	4700													
562	5600													
682	6800													
822	8200													
103	Cap 0 010													
123	(μF) 0.012													
153	0.015													
153	0.018													
223	0.022													
273	0.027													
333	0.033													
393	0.039													
473	0.047													
563	0.056													
683	0.068													
823	0.082													
104	0.10													
124	0.12													
154	0.15		<u> </u>			<u> </u>	 	 	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
224	0.22		l											

*Not RoHS Compliant


= X7R

= NPO/COG

PART & PAD LAYOUT DIMENSIONS

millimeters (inches)

PART DIMENSIONS

0508 - 2 Element

L	W	T	BW	BL	Р	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.43 ± 0.10	0.33 ± 0.08	1.00 REF	0.50 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.017 ± 0.004)	(0.013 ± 0.003)	(0.039 REF)	(0.020 ± 0.004)

0508 - 4 Element

L	W	T	BW	BL	Р	X	S
1.30 ± 0.15	2.10 ± 0.15	0.94 MAX	0.25 ± 0.06	0.20 ± 0.08	0.50 REF	0.75 ± 0.10	0.25 ± 0.10
(0.051 ± 0.006)	(0.083 ± 0.006)	(0.037 MAX)	(0.010 ± 0.003)	(0.008 ± 0.003)	(0.020 REF)	(0.030 ± 0.004)	(0.010 ± 0.004)

0612 - 4 Element

L	W	Т	BW	BL	Р	X	S
1.60 ± 0.20	3.20 ± 0.20	1.35 MAX	0.41 ± 0.10		0.76 REF	1.14 ± 0.10	0.38 ± 0.10
(0.063 ± 0.008)	(0.126 ± 0.008)	(0.053 MAX)	(0.016 ± 0.004)	(0.007 + 0.010) -0.003	(0.030 REF)	(0.045 ± 0.004)	(0.015 ± 0.004)

PAD LAYOUT DIMENSIONS

0508 - 2 Element

Α	В	С	D	E
0.68	1.32	2.00	0.46	1.00
(0.027)	(0.052)	(0.079)	(0.018)	(0.039)

0508 - 4 Element

Α	В	С	D	E
0.56	1.32	1.88	0.30	0.50
(0.022)	(0.052)	(0.074)	(0.012)	(0.020)

0612 - 4 Element

Α	В	С	D	E
0.89	1.65	2.54	0.46	0.76
(0.035)	(0.065)	(0.100)	(0.018)	(0.030)