

74VHCT244A Octal Buffer/Line Driver with 3-STATE Outputs

Features

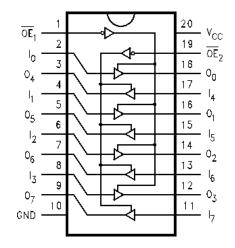
- High Speed: t_{PD} = 5.9ns (Typ.) at V_{CC} = 5V
- Power down protection is provided on inputs and outputs
- Low power dissipation: $I_{CC} = 4\mu A$ (Max.) @ $T_A = 25^{\circ}C$
- Pin and function compatible with 74HCT244

General Description

The VHCT244A is an advanced high speed CMOS octal bus transceiver fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation. The VHCT244A is a noninverting 3-STATE buffer having two active-LOW output enables. This device is designed to be used as 3-STATE memory address drivers, clock drivers, and bus oriented transmitter/receivers.

Protection circuits ensure that 0V to 7V can be applied to the input and output⁽¹⁾ pins without regard to the supply voltage. These circuits prevent device destruction due to mismatched supply and input/output voltages. This device can be used to interface 5V to 3V systems and two supply systems such as battery back up.

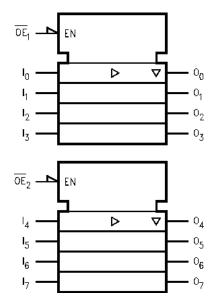
Note:


1. Outputs in OFF-State

Ordering Information

Order Number	Package Number	Package Description
74VHCT244AM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74VHCT244ASJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74VHCT244AMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering number. Pb-Free package per JEDEC J-STD-020B.


Connection Diagram

Pin Description

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	3-STATE Output Enable Inputs
I ₀ —I ₇	Inputs
O ₀ –O ₇	3-STATE Outputs

Logic Symbol

Truth Tables

Inp	uts	Outputs
OE ₁	I _n	(Pins 12, 14, 16, 18)
L	L	L
L	Н	Н
Н	Х	Z

Inp	uts	Outputs
OE ₂	I _n	(Pins 3, 5, 7, 9)
L	L	L
L	Н	Н
Н	Х	Z

H = HIGH Voltage Level

L = LOW Voltage Level

Z = High Impedance

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	–0.5V to +7.0V
V _{IN}	DC Input Voltage	–0.5V to +7.0V
V _{OUT}	DC Output Voltage	
	Note 2	–0.5V to V _{CC} + 0.5V
	Note 3	–0.5V to +7.0V
I _{IK}	Input Diode Current	–20mA
I _{OK}	Output Diode Current ⁽⁴⁾	±20mA
I _{OUT}	DC Output Current	±25mA
I _{CC}	DC V _{CC} / GND Current	±75mA
T _{STG}	Storage Temperature	–65°C to +150°C
TL	Lead Temperature (Soldering, 10 seconds)	260°C

Recommended Operating Conditions⁽⁵⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	4.5V to +5.5V
V _{IN}	Input Voltage	0V to +5.5V
V _{OUT}	Output Voltage	
	Note 2	0V to V _{CC}
	Note 3	0V to +5.5V
T _{OPR}	Operating Temperature	–40°C to +85°C
t _r , t _f	Input Rise and Fall Time, $V_{CC} = 5.0V \pm 0.5V$	0ns/V ~ 20ns/V

Notes:

2. HIGH or LOW state. I_{OUT} absolute maximum rating must be observed.

3. When outputs are in OFF-STATE or when $V_{CC} = 0V$.

4. $V_{OUT} < GND$, $V_{OUT} > V_{CC}$ (Outputs Active).

5. Unused inputs must be held HIGH or LOW. They may not float.

74VHCT244A
Octal
Octal Buffer/Line Driver with 3-ST
e Drive
r with
3-STATE
ATE Outputs

DC Electrical Characteristics

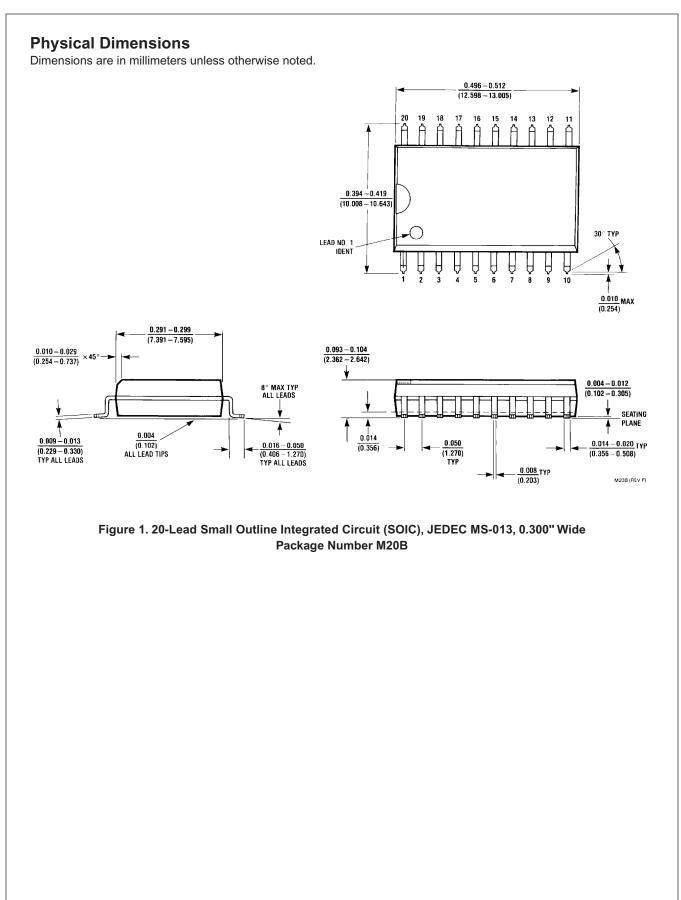
					T _A = 25°C		С	T _A = -40°C to +85°C		
Symbol	Parameter	V _{CC} (V)	Cor	Conditions		Тур.	Max.	Min.	Max.	Units
V _{IH}	HIGH Level Input	4.5			2.0			2.0		V
	Voltage	5.5	1		2.0			2.0		
V _{IL}	LOW Level Input	4.5					0.8		0.8	V
	Voltage	5.5	1				0.8		0.8	
V _{OH}	HIGH Level Output	4.5		I _{OH} = -50μA	4.40	4.50		4.40		V
	Voltage		or V _{IL}	I _{OH} = -8mA	3.94			3.80		
V _{OL}	LOW Level Output	4.5		I _{OL} = 50μA		0.0	0.1		0.1	V
	Voltage			I _{OL} = 8mA			0.36		0.44	
I _{OZ}	3-STATE Output OFF-STATE Current	5.5		$V_{IN} = V_{IH} \text{ or } V_{IL},$ $V_{OUT} = V_{CC} \text{ or } GND$			±0.25		±2.5	μA
I _{IN}	Input Leakage Current	0–5.5	V _{IN} = 5.5 ^v	$V_{IN} = 5.5V \text{ or GND}$			±0.1		±1.0	μA
I _{CC}	Quiescent Supply Current	5.5	$V_{IN} = V_{CC}$ or GND				4.0		40.0	μA
I _{CCT}	Maximum I _{CC} /Input	5.5	$V_{IN} = 3.4V$, Other Input = V_{CC} or GND				1.35		1.50	mA
I _{OFF}	Output Leakage Current (Power Down State)	0.0	V _{OUT} = 5.5V				0.5		5.0	μA

Noise Characteristics

				T _A = 25°C		
Symbol	Parameter	V _{CC} (V)	Conditions	Тур.	Limits	Units
V _{OLP} ⁽⁶⁾	Quiet Output Maximum Dynamic V _{OL}	5.0	$C_L = 50 pF$	0.9	1.1	V
V _{OLV} ⁽⁶⁾	Quiet Output Minimum Dynamic V _{OL}	5.0	$C_L = 50 pF$	-0.9	-1.1	V
V _{IHD} ⁽⁶⁾	Minimum HIGH Level Dynamic Input Voltage	5.0	$C_L = 50 pF$		2.0	V
V _{ILD} ⁽⁶⁾	Maximum HIGH Level Dynamic Input Voltage	5.0	$C_L = 50 pF$		0.8	V

Note:

6. Parameter guaranteed by design.


AC Electrical Characteristics

							т	_A = 25°	C	T _A = - to +	–40°C 85°C	
Symbol	Parameter	V _{CC} (V)	Cond	Conditions		Тур.	Max.	Min.	Max.	Units		
t _{PLH} , t _{PHL}	Propagation Delay	5.0 ± 0.5		$C_L = 15 pF$		5.4	7.4	1.0	8.5	ns		
	Time			$C_L = 50 pF$		5.9	8.4	1.0	9.5			
t _{PZL} , t _{PZH}	3-STATE Output	5.0 ± 0.5	$R_L = 1k\Omega$	$C_L = 15 pF$		7.7	10.4	1.0	12.5	ns		
	Enable Time			$C_L = 50 pF$		8.2	11.4	1.0	13.5			
t _{PLZ} , t _{PHZ}	3-STATE Output Disable Time	5.0 ± 0.5	$R_L = 1k\Omega$	$C_L = 50 pF$		8.8	11.4	1.0	13.0	ns		
t _{OSLH} , t _{OSHL}	Output to Output Skew	5.0 ± 0.5	(7)				1.0		1.0	ns		
C _{IN}	Input Capacitance		V _{CC} = Ope	V _{CC} = Open		4	10		10	pF		
C _{OUT}	Output Capacitance		$V_{CC} = 5.0V$			9				pF		
C _{PD}	Power Dissipation Capacitance		(8)			18				pF		

Notes:

7. Parameter guaranteed by design. $t_{OSLH} = |t_{PLH max} - t_{PLH min}|$; $t_{OSHL} = |t_{PHL max} - t_{PHL min}|$

8. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (Opr.) = C_{PD} • V_{CC} • f_{IN} + I_{CC} / 8 (per F/F). The total C_{PD} when n pcs. of the Octal D Flip-Flop operates can be calculated by the equation: C_{PD} (total) = 20 + 12n

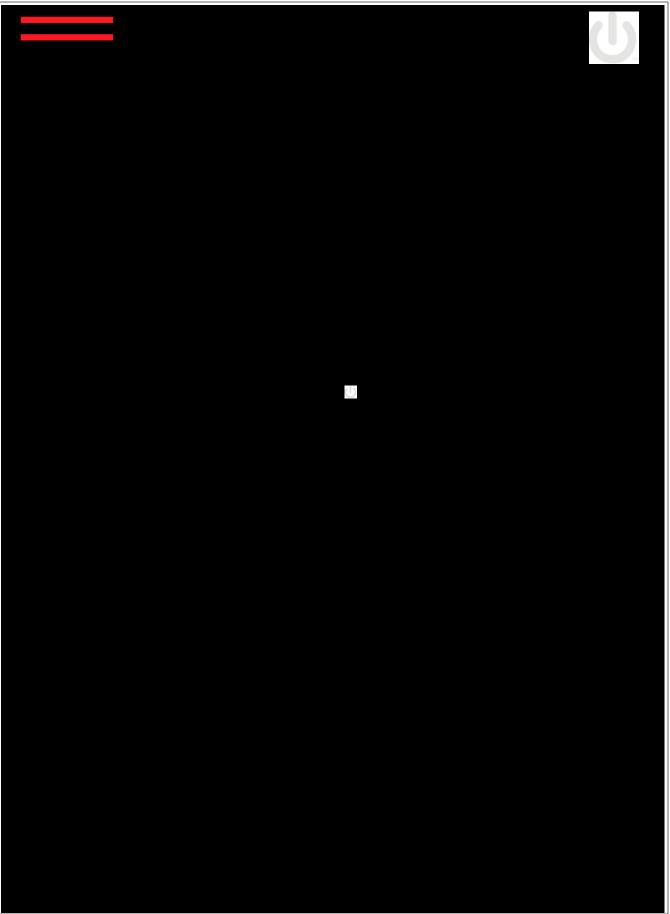



Figure 2. 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D

Physical Dimensions (Continued) Dimensions are in millimeters unless otherwise noted.

