MOSFET – Single, N-Channel, Gate ESD Protection, Small Signal, SC-75

20 V, 238 mA

Features

- Low Gate Charge for Fast Switching
- Small 1.6 x 1.6 mm Footprint
- ESD Protected Gate
- AEC-Q101 Qualified and PPAP Capable NVA4001N
- These Devices are Pb-Free and are RoHS Compliant

Applications

- Power Management Load Switch
- Level Shift
- Portable Applications such as Cell Phones, Media Players,
 Digital Cameras, PDA's, Video Games, Hand Held Computers, etc.

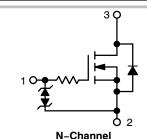
MAXIMUM RATINGS ($T_J = 25$ °C unless otherwise stated)

Paramo	Symbol	Value	Unit	
Drain-to-Source Voltage	V_{DSS}	20	V	
Gate-to-Source Voltage		V _{GS}	±10	V
Continuous Drain Current (Note 1)	Steady State = 25°C	I _D	238	mA
Power Dissipation (Note 1) Steady State = 25°C		P _D	300	mW
Pulsed Drain Current $t_P \le 10 \mu s$		I _{DM}	714	mA
Operating Junction and St	T _J , T _{STG}	–55 to 150	°C	
Continuous Source Curre	I _{SD}	238	mA	
Lead Temperature for Solo (1/8" from case for 10 s)	TL	260	°C	

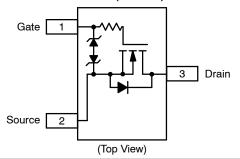
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

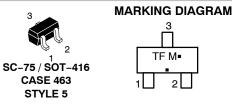
THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{\theta JA}$	416	°C/W


Surface-mounted on FR4 board using 1 in sq. pad size (Cu area = 1.127 in sq. [1 oz] including traces).

ON Semiconductor®


http://onsemi.com


V _{(BR)DSS}	R _{DS(on)} Typ @ V _{GS}	I _D MAX (Note 1)	
20 V	1.5 Ω @ 4.5 V	238 mA	
	2.2 Ω @ 2.5 V	200	

PIN CONNECTIONS

SC-75 (3-Leads)

TF = Specific Device Code

M = Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Symbol	Test Condition	Min	Тур	Max	Unit
					-
V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 100 \mu\text{A}$	20			V
I _{DSS}	V _{GS} = 0 V, V _{DS} = 20 V			1.0	μΑ
I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 10 \text{ V}$			±100	μА
					-
V _{GS(TH)}	$V_{DS} = 3 \text{ V}, I_{D} = 100 \mu\text{A}$	0.5	1.0	1.5	V
R _{DS(on)}	V _{GS} = 4.5 V, I _D = 10 mA		1.5	3.0	0
	V _{GS} = 2.5 V, I _D = 10 mA		2.2	3.5	Ω
9FS	$V_{DS} = 3 \text{ V}, I_{D} = 10 \text{ mA}$		80		mS
C _{ISS}			11.5	20	
Coss	$V_{DS} = 5 \text{ V, f} = 1 \text{ MHz,}$ $V_{CS} = 0 \text{ V}$		10	15	pF
C _{RSS}	193 01		3.5	6.0	
t _{d(ON)}			13		ns
t _r	$V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V},$		15		
t _{d(OFF)}	$I_D = 10 \text{ mA}, R_G = 10 \Omega$		98		ns
t _f			60		
DRAIN-SOURCE DIODE CHARACTERISTICS					
V_{SD}	$V_{GS} = 0 \text{ V}, I_{S} = 10 \text{ mA}$		0.66	8.0	V
	V _{(BR)DSS} I _{DSS} I _{DSS} I _{GSS} V _{GS(TH)} R _{DS(on)} GFS C _{ISS} C _{OSS} C _{RSS} t _{d(ON)} t _r t _{d(OFF)} t _f	$\begin{array}{c ccccc} V_{(BR)DSS} & V_{GS} = 0 \text{ V, } I_D = 100 \mu\text{A} \\ I_{DSS} & V_{GS} = 0 \text{ V, } V_{DS} = 20 \text{ V} \\ I_{GSS} & V_{DS} = 0 \text{ V, } V_{GS} = \pm 10 \text{ V} \\ \hline \\ V_{GS(TH)} & V_{DS} = 3 \text{ V, } I_D = 100 \mu\text{A} \\ \hline \\ R_{DS(on)} & V_{GS} = 4.5 \text{ V, } I_D = 10 \text{ mA} \\ \hline \\ V_{GS} = 2.5 \text{ V, } I_D = 10 \text{ mA} \\ \hline \\ V_{DS} = 3 \text{ V, } I_D = 10 \text{ mA} \\ \hline \\ V_{DS} = 3 \text{ V, } I_D = 10 \text{ mA} \\ \hline \\ C_{ISS} & V_{DS} = 3 \text{ V, } I_D = 10 \text{ mA} \\ \hline \\ C_{RSS} & V_{DS} = 5 \text{ V, } I_D = 10 \text{ mA} \\ \hline \\ V_{GS} = 0 \text{ V} & V_{DS} = 5 \text{ V, } I_D = 10 \text{ mA} \\ \hline \\ V_{GS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 0 \text{ V} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 10 \text{ mA} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 10 \text{ mA} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 10 \text{ mA} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 10 \text{ mA} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 10 \text{ mA} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 10 \text{ mA} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 10 \text{ mA} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 10 \text{ mA} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 10 \text{ mA} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 10 \text{ mA} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 10 \text{ mA} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{DS} = 10 \text{ mA} & V_{DS} = 10 \text{ mA} \\ \hline \\ V_{D$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES

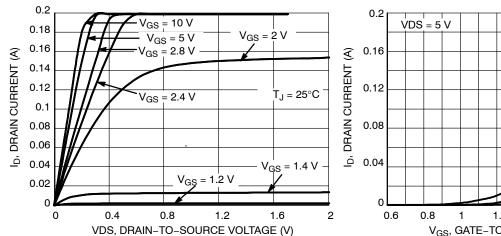


Figure 1. On-region Characteristics

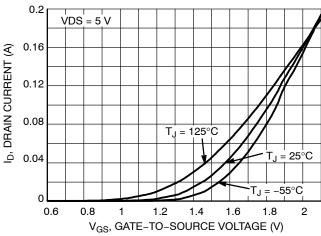


Figure 2. Transfer Characteristics

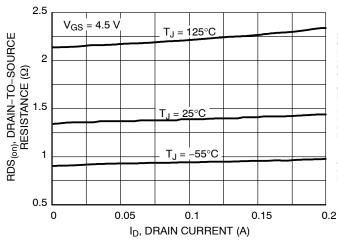


Figure 3. On-resistance versus Drain Current and Temperature

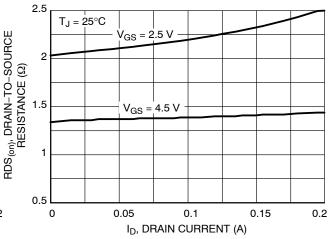


Figure 4. On-resistance versus Drain Current and Gate Voltage

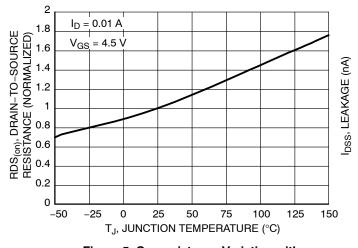


Figure 5. On–resistance Variation with Temperature

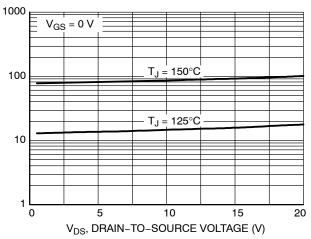
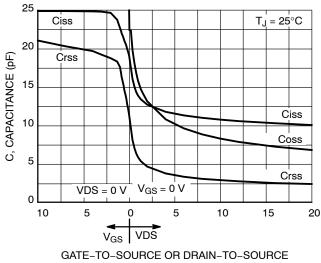



Figure 6. Drain-to-Source Leakage Current versus Voltage

TYPICAL PERFORMANCE CURVES

 $\begin{array}{c} 1000 \\ \hline V_{DD} = 5 \, V \\ \hline I_D = 10 \, \text{mA} \\ \hline V_{GS} = 4.5 \, V \\ \hline U_{DD} = 5 \, V \\ \hline I_{D} = 10 \, \text{mA} \\ \hline V_{GS} = 4.5 \, V \\ \hline I_{D} = 10 \, \text{mA} \\$

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V)

Figure 8. Resistive Switching Time Variation versus Gate Resistance

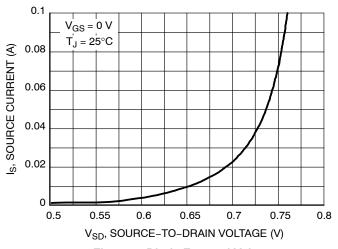
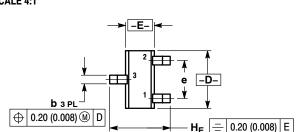


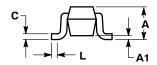
Figure 9. Diode Forward Voltage versus Current

ORDERING INFORMATION

Order Number	Package	Shipping [†]
NTA4001NT1G	SC-75 (Pb-Free)	3000 / Tape & Reel
NVA4001NT1G	SC-75 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


MECHANICAL CASE OUTLINE



SC-75/SOT-416 CASE 463-01 ISSUE G

DATE 07 AUG 2015

STYLE 1: PIN 1. BASE 2. EMITTER

3. COLLECTOR

STYLE 4: PIN 1. CATHODE 2. CATHODE 3. ANODE STYLE 5: PIN 1. GATE 2. SOURCE 3. DRAIN

STYLE 2: PIN 1. ANODE 2. N/C 3. CATHODE

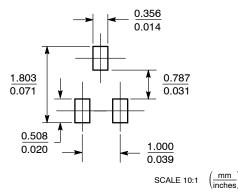
STYLE 3: PIN 1. ANODE 2. ANODE 3. CATHODE

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.70	0.80	0.90	0.027	0.031	0.035
A1	0.00	0.05	0.10	0.000	0.002	0.004
b	0.15	0.20	0.30	0.006	0.008	0.012
С	0.10	0.15	0.25	0.004	0.006	0.010
D	1.55	1.60	1.65	0.061	0.063	0.065
Е	0.70	0.80	0.90	0.027	0.031	0.035
е	1	1.00 BSC		0.04 BSC		
L	0.10	0.15	0.20	0.004	0.006	0.008
HE	1.50	1.60	1.70	0.060	0.063	0.067

GENERIC MARKING DIAGRAM*


XX= Specific Device Code

Μ = Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DOCUMENT NUMBER:	98ASB15184C	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SC-75/SOT-416		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems. or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales