ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Single Buffer

NL17SV16

The NL17SV16 is a single buffer in tiny footprint packages. The device is designed to operate for $V_{\rm CC}$ = 0.9 V to 3.6 V.

Features

- Designed for 0.9 V to 3.6 V V_{CC} Operation
- 1.4 ns t_{PD} at 3.3 V (Typ)
- Inputs/Outputs Over-Voltage Tolerant up to 3.6 V
- I_{OFF} Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.3 V
- Available in SOT-353, SOT-553, SOT-953, SC-74A and UDFN Packages
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

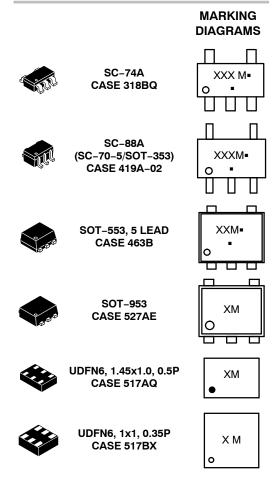


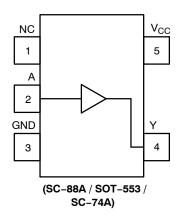
Figure 1. Logic Symbol

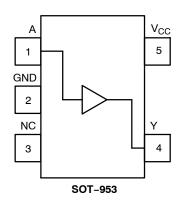
ON Semiconductor®

www.onsemi.com

X, XX = Specific Device Code

M = Date Code*


= Pb-Free Package


(Note: Microdot may be in either location)

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present.

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 7 of this data sheet.

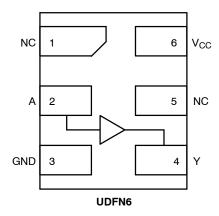


Figure 2. Pinout (Top View)

PIN ASSIGNMENT

Pin	SC-88A / SOT-553 / SC-74A	SOT-953	UDFN6
1	NC	Α	NC
2	Α	GND	Α
3	GND	NC	GND
4	Υ	Υ	Υ
5	V _{CC}	V _{CC}	NC
6	_	_	V _{CC}

FUNCTION TABLE

A Input	Y Output
L	L
Н	Н

MAXIMUM RATINGS

Symbol	Characteristics		Value	Unit
V _{CC}	DC Supply Voltage		-0.5 to +4.3	V
V _{IN}	DC Input Voltage		-0.5 to +4.3	V
V _{OUT}	Tri–Si	High or Low State) tate Mode (Note 1) Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +4.3 -0.5 to +4.3	٧
I _{IK}	DC Input Diode Current	V _{IN} < GND	-50	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-50	mA
I _{OUT}	DC Output Source/Sink Current		±50	mA
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Ground Pin		±50	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds		260	°C
TJ	Junction Temperature Under Bias		+150	°C
θЈА	Thermal Resistance (Note 2)	SC-88A SOT-553 SOT-953 SC-74A UDFN6	377 324 254 320 154	°C/W
P _D	Power Dissipation in Still Air	SC-88A SOT-553 SOT-953 SC-74A UDFN6	332 386 491 390 812	mW
MSL	Moisture Sensitivity		Level 1	-
F _R	Flammability Rating Oxyg	jen Index: 28 to 34	UL 94 V-0 @ 0.125 in	-
V _{ESD}		luman Body Model ged Device Model	2000 1000	V
I _{Latchup}	Latchup Performance (Note 4)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- Applicable to devices with outputs that may be tri-stated.
 Measured with minimum pad spacing on an FR4 board, using 10 mm-by-1 inch, 2 ounce copper trace no air flow per JESD51-7.
 HBM tested to EIA / JESD22-A114-A. CDM tested to JESD22-C101-A. JEDEC recommends that ESD qualification to EIA/JESD22-A115A (Machine Model) be discontinued.
 4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CC}	Positive DC Supply Voltage		0.9	3.6	V
V _{IN}	DC Input Voltage		0	3.6	V
V _{OUT}	DC Output Voltage	Active–Mode (High or Low State) Tri–State Mode (Note 1) Power–Down Mode ($V_{CC} = 0 \text{ V}$)	0 0 0	V _{CC} 3.6 3.6	
T _A	Operating Temperature Range		-55	+125	°C
t _r , t _f	Input Transition Rise and Fall Time		0	20	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

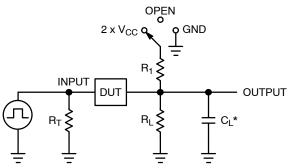
DC ELECTRICAL CHARACTERISTICS

				T	A = 25°	С	T _A = -55°C	to +125°C		
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit	
V _{IH}	High-Level Input		0.9	-	0.5	-	-	-	V	
	Voltage		1.1 to 1.3	0.65 x V _{CC}	-	-	0.65 x V _{CC}	-		
			1.4 to 1.6	0.65 x V _{CC}	-	-	0.65 x V _{CC}	-		
			1.65 to 1.95	0.65 x V _{CC}	-	-	0.65 x V _{CC}	_		
			2.3 to < 2.7	1.6	-	-	1.6	-		
			2.7 to 3.6	2.0	-	-	2.0	_		
V _{IL}	Low-Level Input		0.9	-	0.5	-	-	-	V	
	Voltage		1.1 to 1.3	-	-	0.35 x V _{CC}	_	0.35 x V _{CC}		
			1.4 to 1.6	-	-	0.35 x V _{CC}	-	0.35 x V _{CC}		
			1.65 to 1.95	-	-	0.35 x V _{CC}	_	0.35 x V _{CC}		
				2.3 to < 2.7	-	-	0.7	_	0.7	
			2.7 to 3.6	-	-	0.8	-	0.8		
V _{OH}	High-Level Output	$V_{IN} = V_{IH}$ or V_{IL}							V	
	Voltage	I _{OH} = -100 μA	0.9	-	V _{CC} – 0.1	-	-	-		
			1.1 to 1.3	V _{CC} – 0.1	-	-	V _{CC} – 0.1	-		
			1.4 to 1.6	V _{CC} – 0.1	-	-	V _{CC} – 0.1	-		
			1.65 to 1.95	V _{CC} - 0.2	-	-	V _{CC} – 0.2	-		
			2.3 to <2.7	V _{CC} - 0.2	-	-	V _{CC} – 0.2	-		
			2.7 to 3.6	V _{CC} - 0.2	-	-	V _{CC} – 0.2	-		
		$I_{OH} = -2 \text{ mA}$	1.1 to 1.3	$0.75 \times V_{CC}$	-	-	0.75 x V _{CC}	-		
		$I_{OH} = -4 \text{ mA}$	1.4 to 1.6	$0.75 \times V_{CC}$	-	-	0.75 x V _{CC}	-		
		$I_{OH} = -6 \text{ mA}$	1.65 to 1.95	1.25	-	-	1.25	-		
			2.3 to 2.7	2.0	-	-	2.0	_		
		I _{OH} = −12 mA	2.3 to 2.7	1.8	-	-	1.8	_		
			2.7 to 3.6	2.2	-	-	2.2	_		
		I _{OH} = −18 mA	2.3 to 2.7	1.7	-	-	1.7	_		
			2.7 to 3.6	2.4	-	-	2.4	_		
		I _{OH} = −24 mA	2.7 to 3.6	2.2	_	-	2.2	_		

DC ELECTRICAL CHARACTERISTICS (continued)

				1	Γ _A = 25°	С	T _A = -55°0	C to +125°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
V _{OL}	Low-Level Output	$V_{IN} = V_{IH}$ or V_{IL}							V
	Voltage	I _{OL} = 100 μA	0.9	-	0.1	-	-	-	
			1.1 to 1.3	1	_	0.1	-	0.1	
			1.4 to 1.6	-	-	0.1	-	0.1	
			1.65 to 1.95	-	_	0.2	-	0.2	
			2.3 to < 2.7	-	-	0.2	-	0.2	
			2.7 to 3.6	-	-	0.2	-	0.2	
		I _{OL} = 2 mA	1.1 to 1.3	-	-	0.25 x V _{CC}	-	0.25 x V _{CC}	
		I _{OL} = 4 mA	1.4 to 1.6	-	-	0.25 x V _{CC}	-	0.25 x V _{CC}	
		I _{OL} = 6 mA	1.65 to 1.95	-	-	0.3	-	0.3	
			2.3 to 2.7	-	-	0.3	-	0.3	
		I _{OL} = 12 mA	2.3 to 2.7	ı	_	0.4	-	0.4	
			2.7 to 3.6	-	_	0.4	-	0.4	
		I _{OL} = 18 mA	2.3 to 2.7	-	-	0.6	-	0.6	
			2.7 to 3.6	-	_	0.4	-	0.4	
		I _{OL} = 24 mA	2.7 to 3.6	-	-	0.55	-	0.55	
I _{IN}	Input Leakage Current	V _{IN} = 3.6 V or GND	0.9 to 3.6	_	-	±0.1	_	±0.9	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 3.6 V or V _{OUT} = 3.6 V	0	-	-	1.0	ı	5.0	μΑ
I _{CC}	Quiescent Supply Current	V _{IN} = V _{CC} or GND	0.9 to 3.6	-	-	0.9	-	5.0	μΑ

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

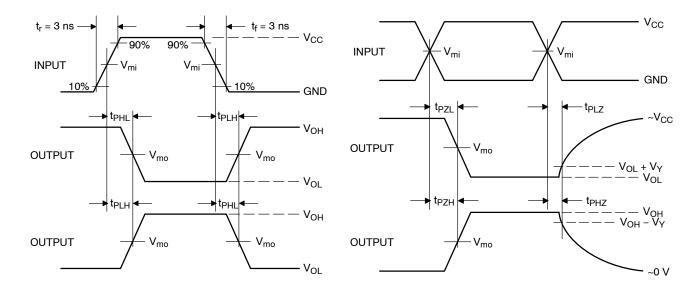

AC ELECTRICAL CHARACTERISTICS

				1	Γ _A = 25°(2	T _A = -55°C	to +125°C	
Symbol	Parameter	Condition	V _{CC} (V)	Min	Тур	Max	Min	Max	Unit
t_{PLH} , t_{PHL}	Propagation Delay,	$R_L = 1 M\Omega$, $C_L = 15 pF$	0.9	-	13.5	-	-	-	ns
	A to Y (Figures 3 and 4)	$R_L = 2 \text{ k}\Omega$, $C_L = 15 \text{ pF}$	1.1 to 1.3	-	5.9	13.0	-	16.9	
		1.4 to 1.6	-	3.2	6.1	-	7.0		
		$R_L = 500 \Omega$, $C_L = 30 pF$	1.65 to 1.95	-	2.3	5.2	-	6.2	
			2.3 to 2.7	-	1.7	3.7	-	4.4	
			2.7 to 3.6	-	1.4	3.3	-	3.8	

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition	Typical (T _A = 25°C)	Unit
C _{IN}	Input Capacitance	V _{CC} = 0 V	2.0	pF
C _{OUT}	Output Capacitance	V _{CC} = 0 V	4.5	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	10 MHz, V_{CC} = 0.9 to 3.6 V, V_{IN} = 0 V or V_{CC}	20	pF

^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption: P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}.



Test	Switch Position
t _{PLH} / t _{PHL}	Open
t _{PLZ} / t _{PZL}	2 x V _{CC}
t _{PHZ} / t _{PZH}	GND

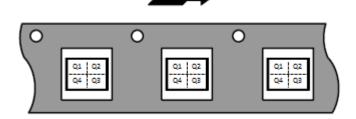
C_L includes probe and jig capacitance

 R_T is Z_{OUT} of pulse generator (typically 50 Ω) f=1 MHz

Figure 3. Test Circuit

		V _{mo} , V		
V _{CC} , V	V _{mi} , V	t _{PLH} , t _{PHL}	t_{PZL} , t_{PLZ} , t_{PZH} , t_{PHZ}	V _Y , V
0.9	V _{CC} /2	V _{CC} / 2	V _{CC} / 2	0.1
1.1 to 1.3	V _{CC} /2	V _{CC} / 2	V _{CC} / 2	0.1
1.4 to 1.6	V _{CC} /2	V _{CC} / 2	V _{CC} / 2	0.1
1.65 to 1.95	V _{CC} /2	V _{CC} / 2	V _{CC} / 2	0.15
2.3 to 2.7	V _{CC} /2	V _{CC} / 2	V _{CC} / 2	0.15
3.0 to 3.6	1.5	1.5	1.5	0.3

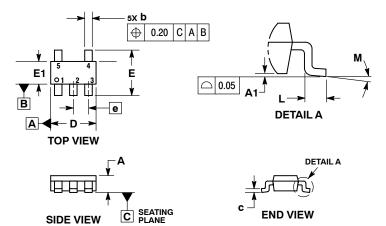
Figure 4. Switching Waveforms


ORDERING INFORMATION

Device	Package	Marking	Pin 1 Orientation (See below)	Shipping [†]
NL17SV16DFT2G (Contact ON Semiconductor)	SC-88A	TBD	Q4	3000 / Tape & Reel
NL17SV16XV5T2G	SOT-553	UN	Q4	4000 / Tape & Reel
NL17SV16P5T5G (Contact ON Semiconductor)	SOT-953	TBD	Q2	8000 / Tape & Reel
NL17SV16DBVT1G (Contact ON Semiconductor)	SC-74A	TBD	Q4	3000 / Tape & Reel
NL17SV16MU1TCG (Contact ON Semiconductor)	UDFN6, 1.45 x 1.0, 0.5P	TBD	Q4	3000 / Tape & Reel
NL17SV16MU3TCG (Contact ON Semiconductor)	UDFN6, 1.0 x 1.0, 0.35P	TBD	Q4	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Pin 1 Orientation in Tape and Reel


Direction of Feed

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

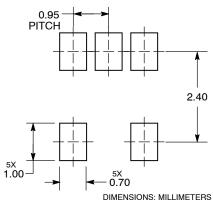
PACKAGE DIMENSIONS

SC-74A CASE 318BQ **ISSUE B**

NOTES:

- NOTES:

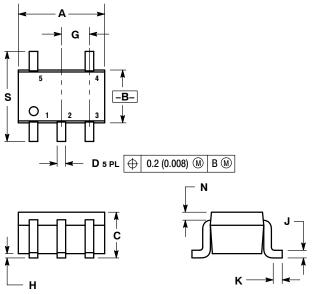
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.


 2. CONTROLLING DIMENSION: MILLIMETERS.

 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEPT 0.15 PER SIDE EXCEED 0.15 PER SIDE.

	MILLIMETERS				
DIM	MIN	MAX			
Α	0.90	1.10			
A1	0.01	0.10			
b	0.25	0.50			
С	0.10	0.26			
D	2.85	3.15			
E	2.50	3.00			
E1	1.35	1.65			
е	0.95 BSC				
L	0.20	0.60			
М	0°	10°			


RECOMMENDED SOLDERING FOOTPRINT*

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

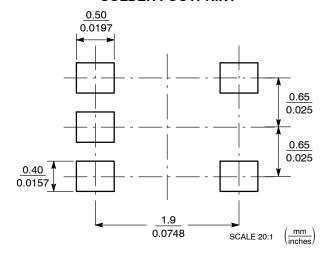
PACKAGE DIMENSIONS

SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE L

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.


 2. CONTROLLING DIMENSION: INCH.

 3. 419A-01 OBSOLETE: NEW STANDARD 419A-02.

 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE PLURGE. BURRS.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.071	0.087	1.80	2.20
В	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	0.30
G	0.026 BSC		0.65 BSC	
Н		0.004		0.10
J	0.004	0.010	0.10	0.25
K	0.004	0.012	0.10	0.30
N	0.008 REF		0.20	REF
S	0.079	0.087	2.00	2.20

SOLDER FOOTPRINT

STYLE 1:
PIN 1. BASE
EMITTER
3. BASE
COLLECTOR
5 COLLECTOR

STYLE 2: PIN 1. ANODE 2. EMITTER 3. BASE 4. COLLECTOR 5. CATHODE STYLE 3: PIN 1. ANODE 1 2. N/C 3. ANODE 2 4. CATHODE 2 5. CATHODE 1

STYLE 8:

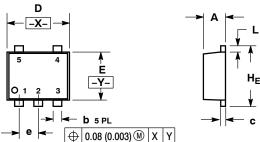
STYLE 4: PIN 1. SOURCE 1 2. DRAIN 1/2 3. SOURCE 1 4. GATE 1 5. GATE 2 STYLE 5: PIN 1. CATHODE
2. COMMON ANODE
3. CATHODE 2
4. CATHODE 3
5. CATHODE 4

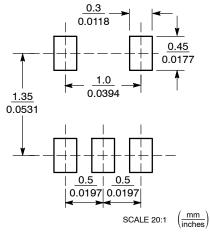
STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR

5. COLLECTOR 2/BASE 1

STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR

5. COLLECTOR


PIN 1. CATHODE
2. COLLECTOR
3. N/C
4. BASE 5. EMITTER


PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE

STYLE 9:

PACKAGE DIMENSIONS

SOT-553, 5 LEAD CASE 463B ISSUE C

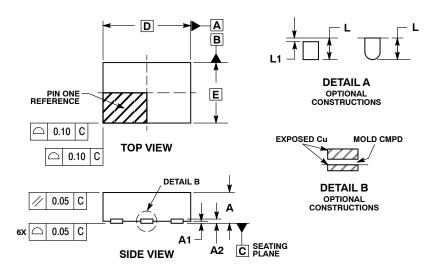
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

STYLE 1: PIN 1. BASE

2. EMITTER
3. BASE
4. COLLECTOR
5. COLLECTOR

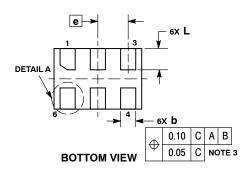
STYLE 6: PIN 1. EMITTER 2 2. BASE 2 3. EMITTER 1 4. COLLECTOR 1 5. COLLECTOR 2/BASE 1

I I I I I I I I I I I I I I I I I I	- 11-	C				
→ e ← 0.08 (0.003) M X Y						
RECOMMENDED SOLDERING FOOTPRINT*						

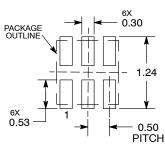

STYLE 2:	STYLE 3:	STYLE 4:	STYLE 5:
PIN 1. CATHODE	PIN 1. ANODE 1	PIN 1. SOURCE 1	PIN 1. ANODE
2. COMMON ANODE	2. N/C	2. DRAIN 1/2	2. EMITTER
3. CATHODE 2	3. ANODE 2	3. SOURCE 1	3. BASE
4. CATHODE 3	4. CATHODE 2	4. GATE 1	4. COLLECTOR
5. CATHODE 4	5. CATHODE 1	5. GATE 2	5. CATHODE
STYLE 7: PIN 1. BASE 2. EMITTER 3. BASE 4. COLLECTOR 5. COLLECTOR	STYLE 8: PIN 1. CATHODE 2. COLLECTOR 3. N/C 4. BASE 5. EMITTER	STYLE 9: PIN 1. ANODE 2. CATHODE 3. ANODE 4. ANODE 5. ANODE	

- IES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETERS
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH
 THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM
 THICKNESS OF BASE MATERIAL.

	MILLIMETERS		INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.022	0.024
q	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.13	0.18	0.003	0.005	0.007
D	1.55	1.60	1.65	0.061	0.063	0.065
Е	1.15	1.20	1.25	0.045	0.047	0.049
a	0.50 BSC		0.020 BSC)	
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.55	1.60	1.65	0.061	0.063	0.065


PACKAGE DIMENSIONS

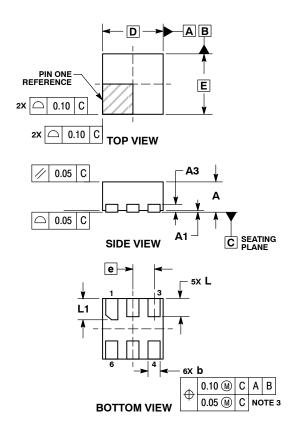
UDFN6, 1.45x1.0, 0.5P CASE 517AQ ISSUE O



- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM THE TERMINAL TIP.

	MILLIMETERS			
DIM	MIN MAX			
Α	0.45	0.55		
A1	0.00 0.05			
A2	0.07 REF			
b	0.20	0.30		
D	1.45 BSC			
Е	1.00 BSC			
е	0.50 BSC			
L	0.30	0.40		
L1		0.15		

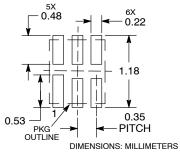
MOUNTING FOOTPRINT



DIMENSIONS: MILLIMETERS

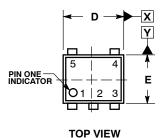
^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

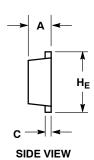
PACKAGE DIMENSIONS

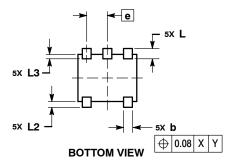

UDFN6, 1x1, 0.35P CASE 517BX ISSUE O

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER
- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.20 MM FROM TERMINAL TIP.
 PACKAGE DIMENSIONS EXCLUSIVE OF BURRS AND MOLD FLASH.

	MILLIMETERS			
DIM	MIN	MAX		
Α	0.45	0.55		
A1	0.00	0.05		
А3	0.13 REF			
b	0.12	0.22		
D	1.00 BSC			
Е	1.00 BSC			
е	0.35 BSC			
L	0.25	0.35		
L1	0.30	0.40		

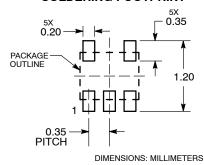

RECOMMENDED SOLDERING FOOTPRINT*




*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

SOT-953 CASE 527AE ISSUE E



NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
- FINISH: MINIMUM LEAD I FIIONICES IS IT IL.
 MINIMUM THICKNESS OF THE BASE MATERIAL.
 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
 FLASH, PROTRUSIONS, OR GATE BURRS.

LAGII, I HOTHOGIGINO, OTT				
	MILLIMETERS			
DIM	MIN	NOM	MAX	
Α	0.34	0.37	0.40	
b	0.10	0.15	0.20	
С	0.07	0.12	0.17	
D	0.95	1.00	1.05	
E	0.75	0.80	0.85	
е	0.35 BSC			
HE	0.95	1.00	1.05	
L	0.175 REF			
L2	0.05	0.10	0.15	
13			0.15	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor newsen to warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and ho

PUBLICATION ORDERING INFORMATION

ON Semiconductor Website: www.onsemi.com

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800–282–9855 Toll Free USA/Canada

Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative