

SOT23 P-CHANNEL ENHANCEMENT MODE VERTICAL DMOS FET

Features

 For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q101, PPAP capable, and manufactured in IATF 16949 certified facilities), please contact us or your local Diodes representative.

https://www.diodes.com/quality/product-definitions/

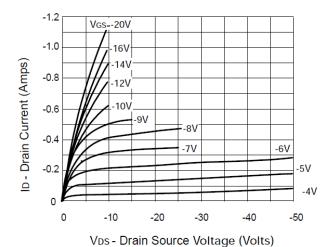
SOT23

Absolute Maximum Ratings

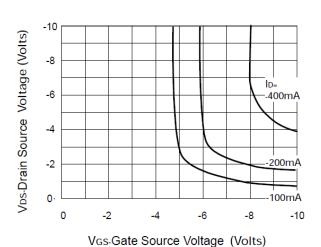
PARTMARKING DETAIL- MX

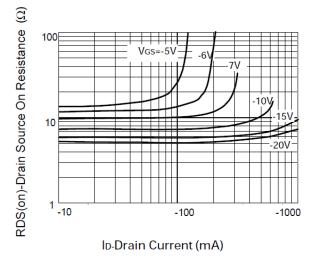
PARAMETER	SYMBOL	VALUE	UNIT
Drain-Source Voltage	V _{DS}	-45	V
Continuous Drain Current at T _{amb} =25°C	I _D	-90	mA
Pulsed Drain Current	I _{DM}	-1.6	А
Gate Source Voltage	V_{GS}	± 20	V
Power Dissipation at T _{amb} =25°C	P _{tot}	330	mW
Operating and Storage Temperature Range	$T_j:T_{stg}$	-55 to +150	°C

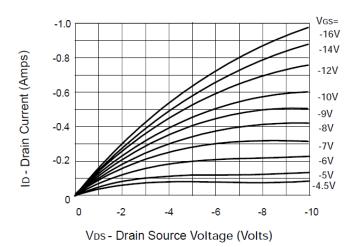
Electrical Characteristics (@ T_A = +25°C, unless otherwise specified.)

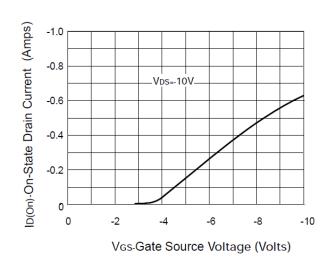

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS.	
Drain-Source Breakdown Voltage	BV _{DSS}	-45	-70		V	I _D =-100μA, V _{GS} =0V	
Gate-Source Threshold Voltage	V _{GS(th)}	-1		-3.5	V	I_D =-1mA, V_{DS} = V_{GS}	
Gate-Body Leakage	I _{GSS}			-20	nA	V _{GS} =-15V, V _{DS} =0V	
Zero Gate Voltage Drain Current	I _{DSS}			-0.5.	μА	V _{DS} =-25V, V _{GS} =0V	
Static Drain-Source On-State Resistance (1)	R _{DS(on)}		9	14	Ω	V _{GS} =-10V,I _D =-200mA	
Forward Transconductance (1)(2)	g _{fs}		90		mS	V _{DS} =-10V,I _D =-200mA	
Input Capacitance (2)	C _{iss}		25		pF	V _{DS} =-10V, V _{GS} =0V, f=1MHz	
Turn-On Delay Time (2)(3)	t _{d(on)}			10	ns		
Rise Time (2)(3)	t _r			10	ns	V _{DD} ≈-25V, I _D =-200mA	
Turn-Off Delay Time (2)(3)	t _{d(off)}			10	ns		
Fall Time (2)(3)	t _f			10	ns		

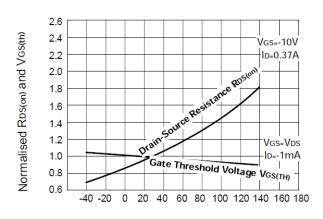
⁽¹⁾ Measured under pulsed conditions. Width=300 μ s. Duty cycle≤2% (2) Sample test.


⁽³⁾ Switching times measured with 50Ω source impedance and <5ns rise time on a pulse generator


Typical Characteristics

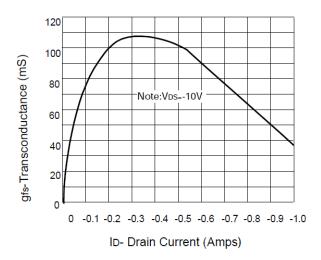

Output Characteristics


Voltage Saturation Characteristics

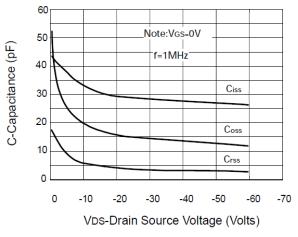

On-resistance vs Drain Current

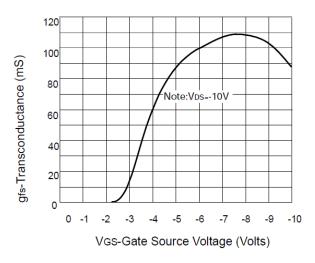
Saturation Characteristics

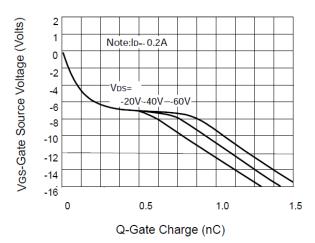
Transfer Characteristics



Junction Temperature (°C)


Normalised RDS(on) and VGS(th) vs Temperature


Typical Characteristics (continued)


Transconductance v drain current

Capacitance v drain-source voltage

Transconductance v gate-source voltage

Gate charge v gate-source voltage

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2019, Diodes Incorporated

www.diodes.com