

Instruction manual for Evaluation Board - TC78B016FTG -

April 3, 2**018** Rev.**1.0**

[Outline]

The TC78B016FTG is a three-phase brushless DC motor driver incorporating our original technology, Intelligent Phase Control (InPAC) that is an automatic phase adjustment function. Elimination of adjustment burden and high-efficiency motor drive are possible by using this technology.

Using BiCD process and realizing the rating of 40 V and 3.0 A per one phase. This evaluation board equipped with motor evaluation function can control a motor by connecting the motor to the external hall element.

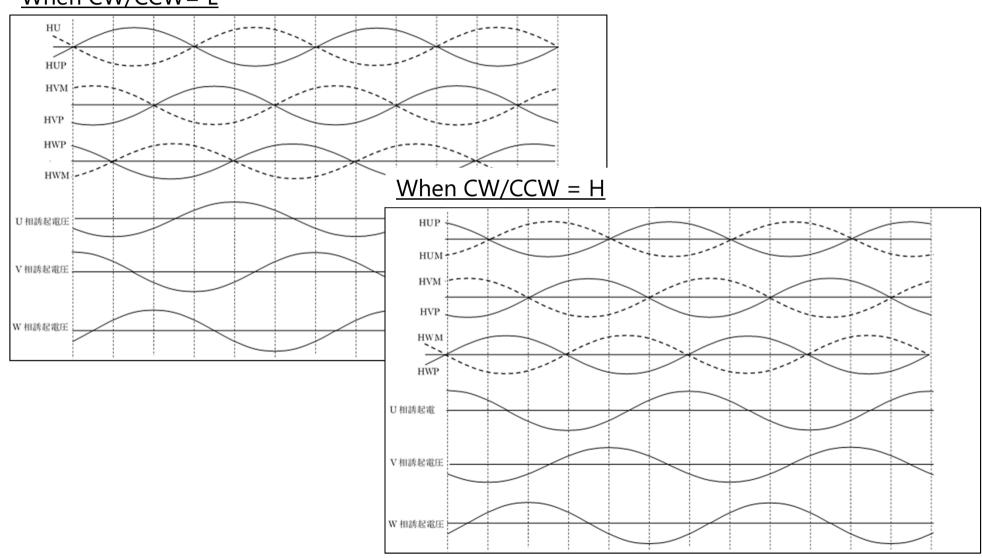
Please sense excellent controllability of three-phase brushless DC motor by applying the TC78B016FTG.

[Note]

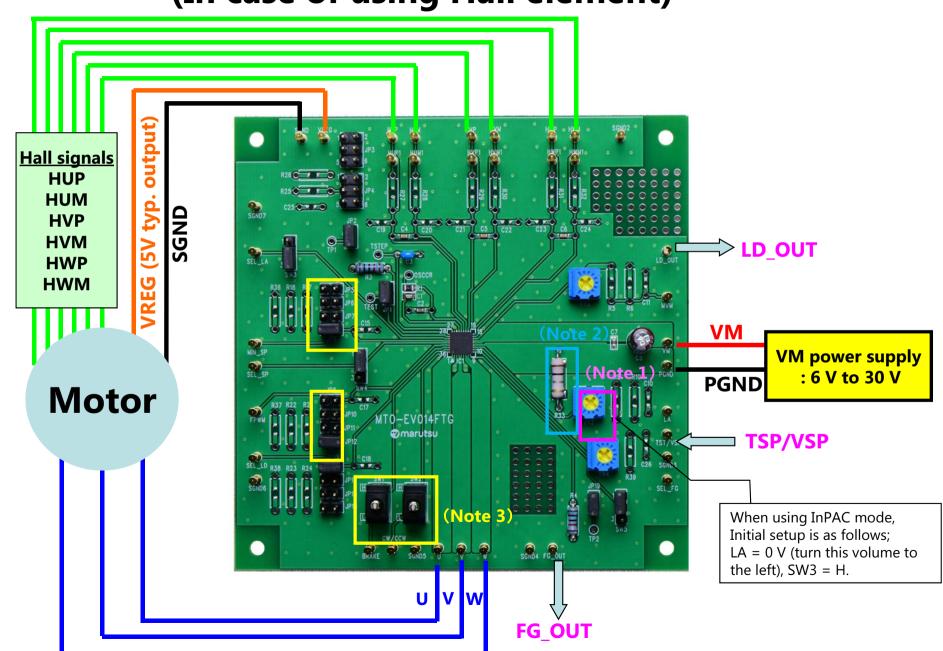
In using, please be careful about the thermal condition sufficiently. As for each control signal, please refer to the IC specification by accessing to the below URL.

http://toshiba.semicon-

storage.com/jp/product/linear/motordriver/detail.TC78B016FTG.html


Further, the application of this evaluation board is limited to the purpose of evaluating and learning the motor control. Please do not ship them to a market.

Note in Using a Motor


Use the motor whose phase relation of the hall element and the induced voltage is shown in the below timing charts.

When CW/CCW= L

Connection Example of Evaluation Board and Motor (In case of using Hall element)

Startup and Shutdown Sequence / Notes

-Startup sequence

- 1. Confirm the conditions: SW4 = H (pin 2 and pin 3 are short-circuited), TSP/VSP = GND (VR4 = 0 Ω , volume is turned in downward direction)
- 2. Apply VM: 6 to 30 V
- 3. Change the volume of VR4 gradually to raise the voltage of TSP/VSP pins. (Motor rotates when their voltage reaches 0.625 V (typ.).)

- **Shutdown sequence**
- 1. Change the volume of VR4 gradually to set TSP/VSP pins GND. (VR4 = 0 Ω , turn the volume in downward direction)
- 2. VM = OFF

Note 1:

When using InPAC mode, please initially set as follows; LA = 0 V (VR2 = 0 Ω , turn downward this volume), SW3 = H (Short-circuit pin 2 and pin 3).

Note 2:

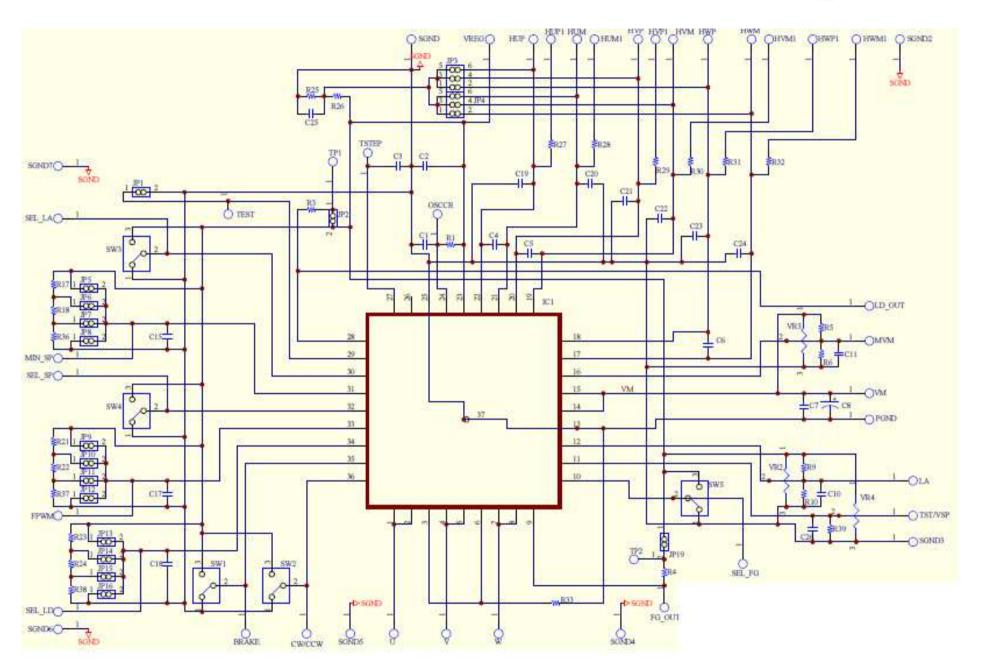
Use the shunt resistor (R33) for current limit.

(Current limit setup) When 0.1 Ω is applied for the resistor R33, the current is limited as follows; Iout (max) = 0.25 V / R33 = 2.5 A

Note 3:

Switches for setting BRAKE pin, CW/CCW pin, SEL_LA pin, and SEL_SP pin

SW name	Pin name	H/L	Description
SW1	BRAKE	Н	Brake function
		L	Normal function
SW2	CW/CCW	Н	Reverse
		L	Forward
SW3	SEL_LA	Н	Auto lead angle mode: InPAC
		Open	Auto lead angle mode: Proportion to frequency
		L	LA external input mode
SW4	SEL_SP	Н	Analog voltage input (0.625 V (typ.) to 3.125 V (typ.))
		Open	Pulse duty signal input (Input signal: 0 to 100 %, 0/5V, 1 kHz to 100 kHz)


Using JP (Jumper)

JP name	Relative pin	Initial state	Description
JP1	TEST-SGND	JP1: Short	Be sure to short-circuit.
JP2	VREG,(OSCCR)	JP2: Short	Be sure to short-circuit.
JP3, JP4	For Hall IC	JP3(1-2): Open JP3(3-4): Open JP3(5-6): Open JP4(1-2): Open JP4(3-4): Open JP4(5-6): Open	•When using Hall IC, following setup is necessary. Open capacitors of C4, C5, and C6. Connect resistors of R25 and R26. And short-circuit $JP3_{(1-2)}$, $JP3_{(3-4)}$, and $JP3_{(5-6)}$, or $JP4_{(1-2)}$, $JP4_{(3-4)}$, and $JP4_{(5-6)}$. (Example: R25 = 20 k Ω , R26 = 20 k Ω) •Also refer to "Notes in using Hall IC" in the application note.
JP5 to 8	MIN_SP	JP5: Open JP6: Open JP7: Open JP8: Short	•MIN_SP pin is set SGND by short-circuiting JP8, and it is set VREG by short-circuiting JP5. •JP6 and JP7 can be selected by connecting resistors to R17, R18, and R36. (Example: R17 = $20 \text{ k}\Omega$, R18 = $8.2 \text{ k}\Omega$, and R36 = $12 \text{ k}\Omega$) •Refer to the technical datasheets for more information on the functions.
JP9 to 12	FPWM	JP9: Open JP10: Open JP11: Open JP12: Short	•FPWM pin is set SGND by short-circuiting JP12, and it is set VREG by short-circuiting JP9. •JP6 and JP7 can be selected by connecting resistors to R21, R22, and R37. (Example: R21 = $20 \text{ k}\Omega$, R22 = $8.2 \text{ k}\Omega$, and R37 = $12 \text{ k}\Omega$) •Refer to the technical datasheets for more information on the functions.
JP13 to 16	SEL_LD	JP13: Short JP14: Open JP15: Open JP16: Open	•SEL_LD pin is set SGND by short-circuiting JP12, and FPWM pin is set VREG by short-circuiting JP5. •JP6 and JP7 can be selected by connecting resistors to R23, R24, and R38. (Example: R23 = $20 \text{ k}\Omega$, R24 = $8.2 \text{ k}\Omega$, and R38 = $12 \text{ k}\Omega$) •Refer to the technical datasheets for more information on the functions.
JP19	FG_OUT-VREG	JP19: Short	High level voltage of FG_OUT pin is set 5 V by short-circuiting JP19.

Circuit Diagram

External Components

No.	Parts
R1	27 kΩ
R3	10 kΩ
R4	10 kΩ
R5	-
R6	-
R9	-
R10	-
R17	-
R18	-
R21	-
R22	-
R23	-
R24	-
R25	-
R26	-
R27	-
R28	-
R29	-
R30	-
R31	-
R32	-
R33	0.1 Ω
R36	-
R37	-
R38	-
R39	-

No.	Parts
C1	360 pF
C2	0.1 µF
C3	0.01 µF
C4	0.01 µF
C5	0.01 µF
C6	0.01 μF
C7	0.1 µF
C8	10 μF/50 V
C10	-
C11	-
C15	-
C17	-
C18	-
C21	-
C22	-
C23	-
C24	-
C25	-
C26	-

No.	Parts
JP1	Short
JP2	Short
JP3	-
JP4	-
JP5	-
JP6	-
JP7	-
JP8	Short
JP9	-
JP10	-
JP11	-
JP12	Short
JP13	Short
JP14	-
JP15	-
JP16	-
JP19	Short

No.	Parts
SW1	SW
SW2	SW
SW3	SW
SW4	SW
SW5	SW

No.	Parts
VR2	VR (50 kΩ)
VR3	VR (50 kΩ)
VR4	VR (50 kΩ)