

The following document contains information on Cypress products. The document has the series name, product name, and ordering part numbering with the prefix "MB". However, Cypress will offer these products to new and existing customers with the series name, product name, and ordering part number with the prefix "CY".

How to Check the Ordering Part Number

- 1. Go to www.cypress.com/pcn.
- 2. Enter the keyword (for example, ordering part number) in the **SEARCH PCNS** field and click **Apply**.
- 3. Click the corresponding title from the search results.
- 4. Download the Affected Parts List file, which has details of all changes

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress is the leader in advanced embedded system solutions for the world's most innovative automotive, industrial, smart home appliances, consumer electronics and medical products. Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, high-performance memories help engineers design differentiated products and get them to market first. Cypress is committed to providing customers with the best support and development resources on the planet enabling them to disrupt markets by creating new product categories in record time. To learn more, go to www.cypress.com.

MB90598G/F598G/V595G

F²MC-16LX MB90595G Series CMOS 16-bit Proprietary Microcontroller

The MB90595G series with FULL-CAN interface and FLASH ROM is especially designed for automotive and industrial applications. Its main features are two on board CAN Interfaces, which conform to V2.0 Part A and Part B, while supporting a very flexible message buffer scheme and so offering more functions than a normal full CAN approach.

The instruction set of F²MC-16LX CPU core inherits an AT architecture of the F²MC* family with additional instruction sets for high-level languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word data.

The MB90595G series has peripheral resources of 8/10-bit A/D converters, UART (SCI), extended I/O serial interface, 8/16-bit PPG timer, I/O timer (input capture (ICU), output compare (OCU)) and stepping motor controller.

Features

- Clock
 - Embedded PLL clock multiplication circuit Operating clock (PLL clock) can be selected from divided-by-2 of oscillation or one to four times the oscillation (at oscillation of 4 MHz, 4 MHz to 16 MHz).
 - Minimum instruction execution time: 62.5 ns (operation at oscillation of 4 MHz, four times the oscillation clock, $V_{\rm CC}$ of 5.0 V)
- Instruction set to optimize controller applications
 Rich data types (bit, byte, word, long word)
 Rich addressing mode (23 types)
 Enhanced signed multiplication/division instruction and RETI instruction functions
 Enhanced precision calculation realized by the 32-bit accumu-
- Instruction set designed for high level language (C language) and multi-task operations
 Adoption of system stack pointer
 Enhanced pointer indirect instructions
 Barrel shift instructions
- Program patch function (for two address pointers)
- Enhanced execution speed: 4-byte instruction queue
- Enhanced interrupt function: 8 levels, 34 factors
- Automatic data transmission function independent of CPU operation

Extended intelligent I/O service function (El²OS): Up to 10 channels

■ Embedded ROM size and types Mask ROM: 128 Kbytes Flash ROM: 128 Kbytes

Embedded RAM size: 4 Kbytes (MB90595G: 6 Kbytes)

■ Flash ROM

Supports automatic programming, Embedded Algorithm Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to point to a fixed boot sector Erase can be performed on each block

Block protection with external programming voltage

■ Low-power consumption (stand-by) mode Sleep mode (mode in which CPU operating clock is stopped) Stop mode (mode in which oscillation is stopped) CPU intermittent operation mode Hardware stand-by mode

■ Process: 0.5 µm CMOS technology

■ I/O port

General-purpose I/O ports: 78 ports
Push-pull output and Schmitt trigger input.
Programmable on each bit as I/O or signal for peripherals.

Timer

Watchdog timer: 1 channel 8/16-bit PPG timer: 8/16-bit × 6 channels 16-bit re-load timer: 2 channels

■ 16-bit I/O timer

16-bit Free-run timer: 1 channel Input capture: 4 channels Output compare: 4 channels

■ Extended I/O serial interface: 1 channel

■ UART0

With full-duplex double buffer (8-bit length) Clock asynchronized or clock synchronized (with start/stop bit) transmission can be selectively used.

■ UART1 (SCI)

With full-duplex double buffer (8-bit length) Clock asynchronized or clock synchronized serial transmission (I/O extended transmission) can be selectively used.

- Stepping motor controller (4 channels)
- External interrupt circuit (8 channels) Amodule for starting an extended intelligent I/O service (EI²OS) and generating an external interrupt which is triggered by an external input.
- Delayed interrupt generation module: Generates an interrupt request for switching tasks.
- 8/10-bit A/D converter (8 channels)
 8/10-bit resolution can be selectively used.
 Starting by an external trigger input.
- FULL-CAN interface: 1 channel Conforming to Version 2.0 Part A and Part B Flexible message buffering (mailbox and FIFO buffering can be mixed)
- 18-bit Time-base counter
- External bus interface: Maximum address space 16 Mbytes

Cypress Semiconductor CorporationDocument Number: 002-07700 Rev. *B

198 Champion Court

San Jose, CA 95134-1709 • 408-943-2600 Revised February 6, 2018

Contents

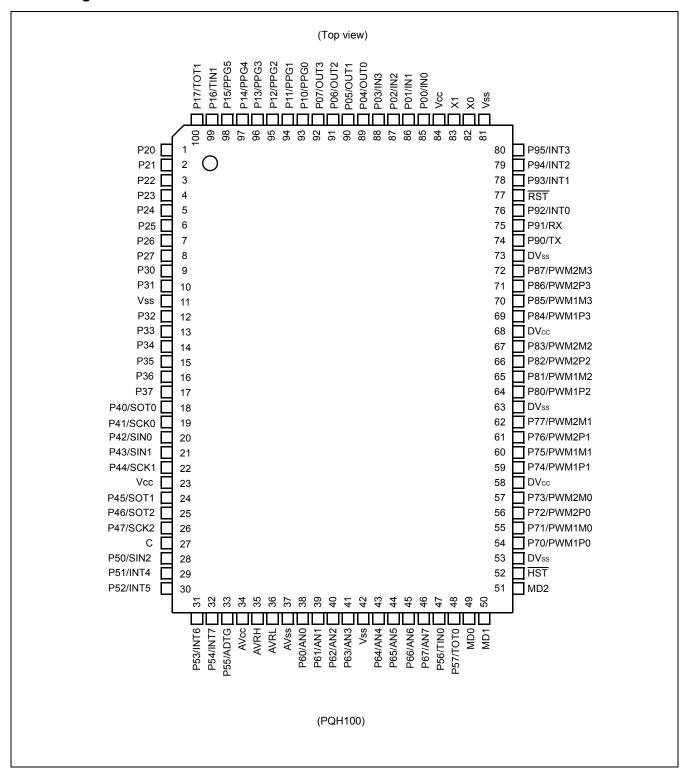
Product Lineup	3
Pin Assignment	5
Pin Description	6
I/O Circuit Type	
Handling Devices	11
Block Diagram	14
Memory Space	
I/O Map	16
Can Controller	
List of Control Registers	23
List of Message Buffers (ID Registers)	24
List of Message Buffers (DLC Registers and	
Data Registers)	27
Interrupt Source, Interrupt Vector, and Interrupt	
Control Register	29

Electrical Characteristics	31
Absolute Maximum Ratings	31
Recommended Conditions	33
DC Characteristics	33
AC Characteristics	35
A/D Converter	42
A/D Converter Glossary	44
Notes on Using A/D Converter	45
Flash memory	46
Example Characteristics	47
Ordering Information	49
Package Dimensions	50
Major Changes	51

1. Product Lineup

Features		Features MB90598G		MB90V595G			
Classific	ation	Mask ROM product	Flash ROM product	Evaluation product			
ROM size		128 Kbytes	128 Kbytes Boot block Hard-wired reset vector	None			
RAM siz	е	4 Kbytes	4 Kbytes	6 Kbytes			
Emulator	r-specific power supply	-		None			
CPU fun	octions	The number of instructions: 351 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum execution time: 62.5 ns (at machine Interrupt processing time: 1.5 µs (at machine co	e clock frequency of 16 MHz) lock frequency of 16 MHz, minin	num value)			
UART0			/8/9615/10417/19230/38460/625 000 bps at machine clock freque	ency of 16 MHz)			
UART1(SCI)	Transmission can be performed by bi-directional serial transmission or by master/slave connection Clock synchronized transmission (62.5 K/125 K/250 K/500 K/1 Mbps) Clock asynchronized transmission (1202/2404/4808/9615/31250 bps) Transmission can be performed by bi-directional serial transmission or by master/slave connection					
8/10-bit /	A/D converter	Conversion precision: 8/10-bit can be selective. Number of inputs: 8 One-shot conversion mode (converts selecte. Scan conversion mode (converts two or more up to 8 chann. Continuous conversion mode (converts selected character).	d channel once only) e successive channels and can pels) els)				
Number of channels: 6 (8/16-bit × 6 channels) 8/16-bit PPG timers (6 channels) Number of channels: 6 (8/16-bit × 6 channels) PPG operation of 8-bit or 16-bit A pulse wave of given intervals and given duty ratios can be output. Pulse interval: fsys, fsys/2², fsys/2³, fsys/2³ (fsys = system clock frequency) 128µs (fosc = 4MHz: oscillation clock frequency)							
16-bit Re	eload timer	Number of channels: 2 Operation clock frequency: fsys/2¹, fsys/2³, fsys/2⁵ (fsys = System clock frequency) Supports External Event Count function					
16-bit	16-bit Output compares	Number of channels: 4 Pin input factor: A match signal of compare register					
I/O tim- er	Input captures	Number of channels: 4 Rewriting a register value upon a pin input (rising, falling, or both edges)					

Features	MB90598G	MB90F598G	MB90V595G				
CAN Interface	Number of channels: 1 Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit masks Supports up to 1Mbps CAN bit timing setting: MB90598G/F598G:TSEG2 ≥ RSJW						
Stepping motor controller (4 channels)	Four high current outputs for each channel Synchronized two 8-bit PWM's for each channel						
External interrupt circuit	Number of inputs: 8 Started by a rising edge, a falling edge, an "H" le	evel input, or an "L" level input.					
Serial IO		Clock synchronized transmission (31.25 K/62.5 K/125 K/500 K/1 Mbps at system clock frequency of 16 MHz) LSB first/MSB first					
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57 (at oscillation of 4 MHz, minimum value)	7.23 ms, 458.75 ms					
Flash Memory	Supports automatic programming, Embedded Algorithm and Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory Boot block configuration Erase can be performed on each block Block protection with external programming voltage Flash Writer from Minato Electronics, Inc.						
Low-power consumption (stand-by) mode	Sleep/stop/CPU intermittent operation/watch timer/hardware stand-by						
Process	CMOS						
Power supply voltage for operation*2	+5 V±10 %						
Package	QFP-100 PGA-256						


^{*1:} It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.

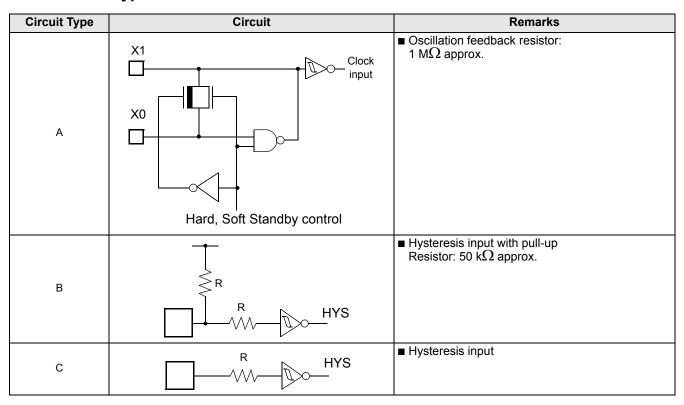
Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.

^{*2:} Varies with conditions such as the operating frequency. (See "Electrical Characteristics.")

2. Pin Assignment

3. Pin Description

Pin no.	Pin name	Circuit type	Function			
82	X0					
83	X1	А	Oscillator pin			
77	RST	В	Reset input			
52	HST	С	Hardware standby input			
85 to 88	P00 to P03	G	General purpose IO			
00 10 00	IN0 to IN3	G	Inputs for the Input Captures			
89 to 92	P04 to P07	0	General purpose IO			
89 10 92	OUT0 to OUT3	G	Outputs for the Output Compares.			
93 to 98	P10 to P15	D	General purpose IO			
93 10 96	PPG0 to PPG5	D	Outputs for the Programmable Pulse Generators			
99	P16	D	General purpose IO			
99	TIN1	D	TIN input for the 16-bit Reload Timer 1			
400	P17	<u> </u>	General purpose IO			
100	TOT1	D	TOT output for the 16-bit Reload Timer 1			
1 to 8	P20 to P27	G	General purpose IO			
9 to 10	P30 to P31	G	General purpose IO			
12 to 16	P32 to P36	G	General purpose IO			
17	P37	D	General purpose IO			
40	P40	6	General purpose IO			
18	SOT0	G	SOT output for UART 0			
19	P41	G	General purpose IO			
19	SCK0	G	SCK input/output for UART 0			
20	P42	G	General purpose IO			
20	SIN0	G	SIN input for UART 0			
21	P43	G	General purpose IO			
21	SIN1	G	SIN input for UART 1			
22	P44		General purpose IO			
22	SCK1 G SCK input/output for UART 1		SCK input/output for UART 1			
24	P45 G General purpose IO		General purpose IO			
24	SOT1	9	SOT output for UART 1			
P46 General p		G	General purpose IO			
20	SOT2 G SOT output for the Serial IO		SOT output for the Serial IO			
P47		G	General purpose IO			
26	SCK2	G	SCK input/output for the Serial IO			



P50	Pin no.	Pin name	Circuit type	Function
SIN2	20	P50	2	General purpose IO
29 to 32	28	SIN2	U	SIN Input for the Serial IO
INT4 to INT7	20 to 22	P51 to P54	<u> </u>	General purpose IO
ADTG	29 10 32	INT4 to INT7	D	External interrupt input for INT4 to INT7
ADTG	22	P55	D	General purpose IO
ANO to AN3	33	ADTG	Ь	Input for the external trigger of the A/D Converter
AND to ANS Inputs for the A/D Converter	39 to 41	P60 to P63	Е	General purpose IO
ANA to AN7	30 10 41	AN0 to AN3	L	Inputs for the A/D Converter
ANA to AN7	13 to 16	P64 to P67	Е	General purpose IO
TIN0	43 10 40	AN4 to AN7	L	Inputs for the A/D Converter
TIN0	47	P56	D	General purpose IO
TOT	47	TIN0	D	TIN input for the 16-bit Reload Timer 0
TOT0	40	P57	D	General purpose IO
PWM1P0	40	TOT0	D	TOT output for the 16-bit Reload Timer 0
PWM1M0		P70 to P73		General purpose IO
PWM1P1	54 to 57	PWM1M0 PWM2P0	F	Output for Stepper Motor Controller channel 0
59 to 62 PWM1M1 PWM2P1 PWM2P1 PWM2M1 F Output for Stepper Motor Controller channel 1 64 to 67 P80 to P83 PWM1P2 PWM1M2 PWM2P2 PWM2M2 F Output for Stepper Motor Controller channel 2 69 to 72 P84 to P87 PWM1M3 PWM2P3 PWM2M3 General purpose IO 74 P90 PWM2M3 D 75 P91 General purpose IO		P74 to P77		General purpose IO
F Output for Stepper Motor Controller channel 2 PWM1P2 PWM2P2 PWM2P2 PWM2M2 P84 to P87 F General purpose IO PWM1P3 PWM1P3 PWM2P3 PWM2P3 PWM2M3 F Output for Stepper Motor Controller channel 3 Output for Stepper Motor Controller channel 3 PWM2P3 PWM2M3 P90 TX P90 TX General purpose IO TX output for CAN Interface General purpose IO TX output for CAN Interface General purpose IO TX output for CAN Interface	59 to 62	62 PWM1M1 PWM2P1	F	Output for Stepper Motor Controller channel 1
F Output for Stepper Motor Controller channel 2 PWM1M2 PWM2P2 PWM2M2 P84 to P87 PWM1P3 PWM1M3 PWM2P3 PWM2P3 PWM2M3 PMM2M3 PWM2M3 P90 TX P91 D Output for Stepper Motor Controller channel 2 Output for Stepper Motor Controller channel 3 General purpose IO TX output for CAN Interface General purpose IO General purpose IO TX output for CAN Interface General purpose IO General purpose IO TX output for CAN Interface General purpose IO		P80 to P83		General purpose IO
F Output for Stepper Motor Controller channel 3 PWM1P3 PWM2P3 PWM2M3 P90 TX P90 TX P91 P91 General purpose IO TX output for CAN Interface General purpose IO General purpose IO General purpose IO	64 to 67	PWM1M2 PWM2P2	F	Output for Stepper Motor Controller channel 2
F Output for Stepper Motor Controller channel 3 PWM2P3 PWM2M3 P90 TX P90 TX P91 D General purpose IO TX output for CAN Interface General purpose IO General purpose IO TX output for CAN Interface General purpose IO		P84 to P87		General purpose IO
74 TX D TX output for CAN Interface P91 D General purpose IO	69 to 72	PWM1M3 PWM2P3	F	Output for Stepper Motor Controller channel 3
TX TX output for CAN Interface P91 General purpose IO D	7.4	P90	D	General purpose IO
75 D	/4	TX	ט	TX output for CAN Interface
RX Input for CAN Interface	75	P91 General purpose IO		General purpose IO
1	/5	RX	ט	RX input for CAN Interface

Pin no.	Pin name	Circuit type	Function	
76	P92	D	General purpose IO	
76	INT0		External interrupt input for INT0	
78 to 80	P93 to P95	D	General purpose IO	
76 10 60	INT1 to INT3		External interrupt input for INT1 to INT3	
58, 68	DVcc	_	Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72)	
53, 63, 73	DVss	_	Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)	
34	AVcc	Power supply	Dedicated power supply pin for the A/D Converter	
37	AVss	Power supply	Dedicated ground pin for the A/D Converter	
35	AVRH	Power supply	Upper reference voltage input for the A/D Converter	
36	AVRL	Power supply	Lower reference voltage input for the A/D Converter	
49, 50	MD0 MD1	С	Operating mode selection input pins. These pins should be connected to Vcc or Vss.	
51	MD2	Н	Operating mode selection input pin. This pin should be connected to Vcc or Vss.	
27	С	_	External capacitor pin. A capacitor of $0.1\mu F$ should be connected to this pin and V_{SS} .	
23, 84	Vcc	Power supply	Power supply pins (5.0 V).	
11, 42, 81	Vss	Power supply	Ground pins (0.0 V).	

4. I/O Circuit Type

Circuit Type	Circuit	Remarks
D	V _{CC} P-ch N-ch N-ch HYS	■ CMOS output ■ CMOS Hysteresis input
E	Vcc P-ch N-ch N-ch HYS	■ CMOS output ■ CMOS Hysteresis input ■ Analog input (Continuo

Document Number: 002-07700 Rev. *B

Circuit Type	Circuit	Remarks
		■ CMOS high current output
F	P-ch High current N-ch HYS	■ CMOS Hysteresis input
		■ CMOS output
	 Vcc	■ CMOS Hysteresis input
G	P-ch N-ch R HYS R T TTL	■ TTL input (MB90F598G, only in Flash mode)
н	R HYS	■ Hysteresis input Pull-down Resistor: 50 kΩ approx. (except MB90F598G)

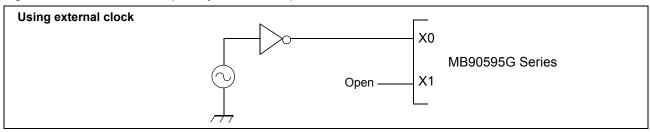
5. Handling Devices

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

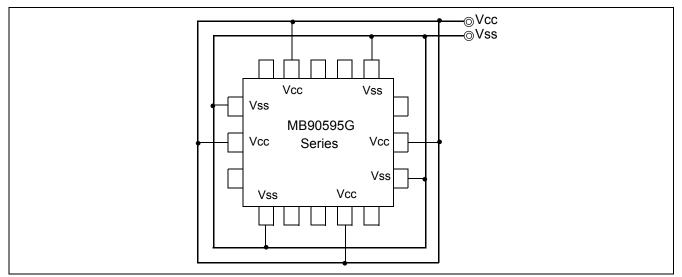

(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least 2 k Ω resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.



(4) Power supply pins (Vcc/Vss)

In products with multiple V_{∞} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)

Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μF between Vcc and Vss pins near the device.

(5) Pull-up/down resistors

The MB90595G Series does not support internal pull-up/down resistors. Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

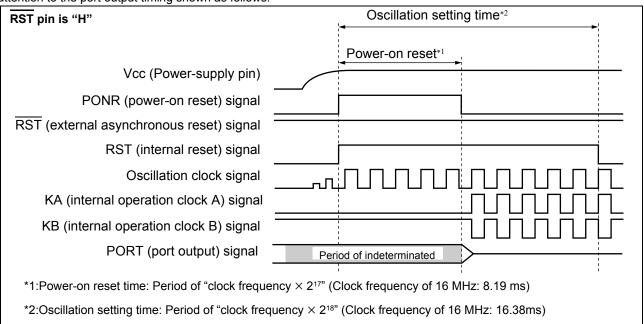
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(8) Connection of Unused Pins of A/D Converter

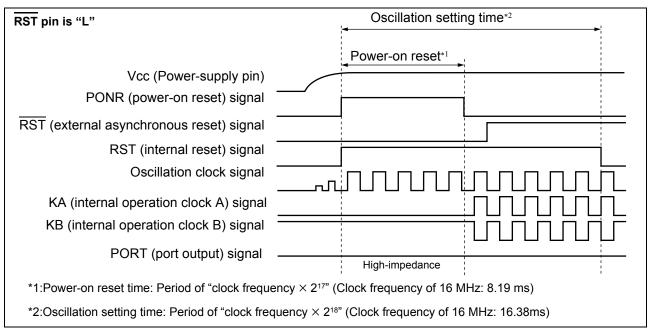
Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.


(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 μ s or more (0.2 V to 2.7 V).


(11) Indeterminate outputs from ports 0 and 1 (MB90V595G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

- If RST pin is "H", the outputs become indeterminate.
- If RST pin is "L", the outputs become high-impedance. Pay attention to the port output timing shown as follows.

(12) Initialization

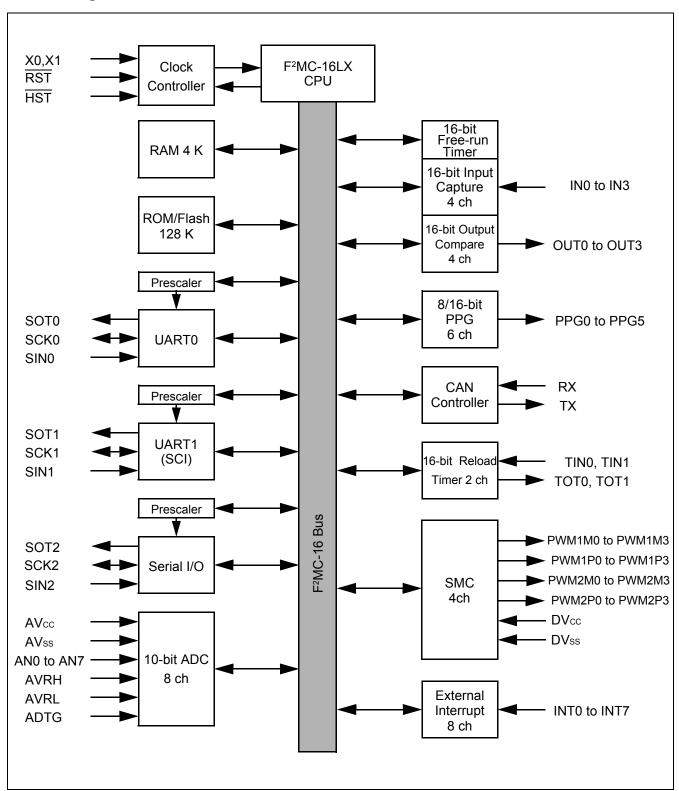
The device contains internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00_H".

If the values of the corresponding bank register (DTB,ADB,USB,SSB) are set to other than "00_H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

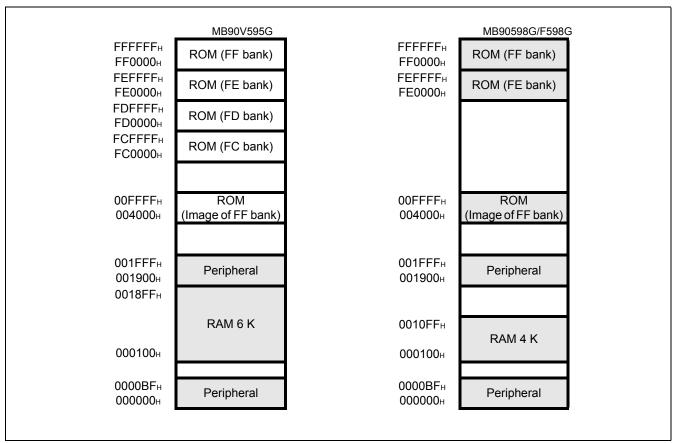
(14) Using REALOS


The use of El²OS is not possible with the REALOS real time operating system.

(15) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected in the microcontroller, it may attempt to continue the operation using the free-running frequency of the automatic oscillating circuit in the PLL circuitry even if the oscillator is out of place or the clock input is stopped. Performance of this operation, however, cannot be guaranteed.

6. Block Diagram



7. Memory Space

The memory space of the MB90595G Series is shown below

Figure 1. Memory space map

Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far".

For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000H to FFFFFH looks, therefore, as if it were the image for 004000H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000H to FFFFFFH.

Document Number: 002-07700 Rev. *B

8. I/O Map

Address	Register	Abbreviation	Access	Peripheral	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXXXB
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXXB
09н	Port 9 Data Register	PDR9	R/W	Port 9	XXXXXXB
0Ан to 0Fн		Reserv	ed		
10н	Port 0 Direction Register	DDR0	R/W	Port 0	0 0 0 0 0 0 0 0в
11н	Port 1 Direction Register	DDR1	R/W	Port 1	0 0 0 0 0 0 0 0в
12н	Port 2 Direction Register	DDR2	R/W	Port 2	0 0 0 0 0 0 0 0в
13н	Port 3 Direction Register	DDR3	R/W	Port 3	0 0 0 0 0 0 0 0в
14н	Port 4 Direction Register	DDR4	R/W	Port 4	0 0 0 0 0 0 0 0в
15н	Port 5 Direction Register	DDR5	R/W	Port 5	0 0 0 0 0 0 0 0в
16н	Port 6 Direction Register	DDR6	R/W	Port 6	0 0 0 0 0 0 0 0в
17н	Port 7 Direction Register	DDR7	R/W	Port 7	0 0 0 0 0 0 0 0в
18н	Port 8 Direction Register	DDR8	R/W	Port 8	0 0 0 0 0 0 0 0в
19н	Port 9 Direction Register	DDR9	R/W	Port 9	000000в
1Ан		Reserv	ed		
1Вн	Analog Input Enable Register	ADER	R/W	Port 6, A/D	11111111
1Сн to 1Fн		Reserv	ed		•
20н	Serial Mode Control Register 0	UMC0	R/W		0 0 0 0 0 1 0 0в
21н	Serial status Register 0	USR0	R/W	LIADTO	0 0 0 1 0 0 0 0в
22н	Serial Input/Output Data Register 0	UIDR0/UODR0	R/W	UART0	XXXXXXXXB
23н	Rate and Data Register 0	URD0	R/W		0 0 0 0 0 0 0 X _B
24н	Serial Mode Register 1	SMR1	R/W		0 0 0 0 0 0 0 0в
25н	Serial Control Register 1	SCR1	R/W	UART1	0 0 0 0 0 1 0 0в
26н	Serial Input/Output Data Register 1	SIDR1/SODR1	R/W		XXXXXXXXB
27н	Serial Status Register 1	SSR1	R/W		0 0 0 0 1 _ 0 Ов
28н	UART1 Prescaler Control Register	U1CDCR	R/W		01111в

Address	Register	Abbreviation	Access	Peripheral	Initial value
29н to 2Ан		Reserved			
2Вн	Serial IO Prescaler	SCDCR	R/W		01111в
2Сн	Serial Mode Control Register (low-order)	SMCS	R/W		0000
2Dн	Serial Mode Control Register (high-order)	SMCS	R/W	Serial IO	0 0 0 0 0 0 1 0 _B
2Ен	Serial Data Register	SDR	R/W		XXXXXXXX
2Fн	Edge Selector	SES	R/W		Ов
30н	External Interrupt Enable Register	ENIR	R/W		0 0 0 0 0 0 0
31н	External Interrupt Request Register	EIRR	R/W	External Interrupt	XXXXXXXX
32н	External Interrupt Level Register	ELVR	R/W		0 0 0 0 0 0 0
33н	External Interrupt Level Register	ELVR	R/W		0 0 0 0 0 0 0
34н	A/D Control Status Register 0	ADCS0	R/W		0 0 0 0 0 0 0
35н	A/D Control Status Register 1	ADCS1	R/W	A/D Converter	0 0 0 0 0 0 0 0
36н	A/D Data Register 0	ADCR0	R		XXXXXXXXB
37н	A/D Data Register 1	ADCR1	R/W		0 0 0 0 1 _ XXE
38н	PPG0 Operation Mode Control Register	PPGC0	R/W	. 16-bit Programmable Pulse Generator 0/1	0_0001
39н	PPG1 Operation Mode Control Register	PPGC1	R/W		0_00001
ЗАн	PPG0, 1 Output Pin Control Register	PPG01	R/W		00000i
3Вн		Reserved			
3Сн	PPG2 Operation Mode Control Register	PPGC2	R/W	16-bit Programmable	0_0001
3Dн	PPG3 Operation Mode Control Register	PPGC3	R/W	Pulse	0_00001
3Ен	PPG2, 3 Output Pin Control Register	PPG23	R/W	Generator 2/3	000000
3Fн		Reserved		<u> </u>	
40н	PPG4 Operation Mode Control Register	PPGC4	R/W	16-bit Programmable	0_0001
41н	PPG5 Operation Mode Control Register	PPGC5	R/W	Pulse	0_00001
42н	PPG4, 5 Output Pin Control Register	PPG45	R/W	Generator 4/5	000000
43н		Reserved			
44н	PPG6 Operation Mode Control Register	PPGC6	R/W	16-bit Programmable	0_0001
45н	PPG7 Operation Mode Control Register	PPGC7	R/W	Pulse	0_00001
46н	PPG6, 7 Output Pin Control Register	PPG67	R/W	Generator 6/7	000000
47н	-	Reserved		L	
48н	PPG8 Operation Mode Control Register	PPGC8	R/W	46 hit Droggers and I	0_0001
49н	PPG9 Operation Mode Control Register	PPGC9	R/W	16-bit Programmable Pulse	0_00001
4Ан	PPG8, 9 Output Pin Control Register	PPG89	R/W	Generator 8/9	000000
4Вн		Reserved		I	

Address	Register	Abbreviation	Access	Peripheral	Initial value
4Сн	PPGA Operation Mode Control Register	PPGCA	R/W	16-bit	0_0001в
4Dн	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	0_00001в
4Ен	PPGA, B Output Pin Control Register	PPGAB	R/W	Generator A/B	0 0 0 0 0 0B
4F _H		Reserved			
50н	Timer Control Status Register 0	TMCSR0	R/W		0 0 0 0 0 0 0 0 _B
51н	Timer Control Status Register 0	TMCSR0	R/W	16-bit	0000 _B
52н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W	Reload Timer 0	XXXXXXXXB
53н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W		XXXXXXXXB
54н	Timer Control Status Register 1	TMCSR1	R/W		0 0 0 0 0 0 0 0 _B
55н	Timer Control Status Register 1	TMCSR1	R/W	16-bit	0000
56н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W	Reload Timer 1	XXXXXXX
57н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W		XXXXXXXXB
58н	Output Compare Control Status Register 0	OCS0	R/W	Output	000000
59н	Output Compare Control Status Register 1	OCS1	R/W	Compare 0/1	00000 _B
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output Compare 2/3	0 0 0 0 0 0 _B
5Вн	Output Compare Control Status Register 3	OCS3	R/W		00000 _B
5Сн	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	0 0 0 0 0 0 0 0 _B
5Dн	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	0 0 0 0 0 0 0 0 _B
5Ен	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	0 0 0 0 0 0 _B
5Fн		Reserved	I		
60н	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	0 0 0 0 0 0в
61н		Reserved			
62н	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	0 0 0 0 0 0 _B
63н		Reserved			
64н	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	0 0 0 0 0 0в
65н		Reserved			
66н	Timer Data Register (low-order)	TCDT	R/W		0 0 0 0 0 0 0 0 _B
67н	Timer Data Register (high-order)	TCDT	R/W	16-bit Free-run Timer	0 0 0 0 0 0 0 0 _B
68н	Timer Control Status Register	TCCS	R/W		0 0 0 0 0 0 0 0 _B
69н to 6Ен		Reserved			

Address	Register	Abbreviation	Access	Peripheral	Initial value
6 Fн	ROM Mirror Function Selection Register	ROMM	R/W	ROM Mirror	1в
70н	PWM1 Compare Register 0	PWC10	R/W		XXXXXXXXB
71н	PWM2 Compare Register 0	PWC20	R/W	Stepping Motor	XXXXXXXXB
72н	PWM1 Select Register 0	PWS10	R/W	Controller 0	000000 _B
73н	PWM2 Select Register 0	PWS20	R/W		_ 0 0 0 0 0 0 0 _B
74н	PWM1 Compare Register 1	PWC11	R/W		XXXXXXXXB
75н	PWM2 Compare Register 1	PWC21	R/W	Stepping Motor	XXXXXXXX
76н	PWM1 Select Register 1	PWS11	R/W	Controller 1	000000 _B
77н	PWM2 Select Register 1	PWS21	R/W		_ 0 0 0 0 0 0 0 _B
78н	PWM1 Compare Register 2	PWC12	R/W		XXXXXXXXB
79н	PWM2 Compare Register 2	PWC22	R/W	Stepping Motor	XXXXXXXX
7Ан	PWM1 Select Register 2	PWS12	R/W	Controller 2	000000 _B
7Вн	PWM2 Select Register 2	PWS22	R/W		_ 0 0 0 0 0 0 0 _B
7Сн	PWM1 Compare Register 3	PWC13	R/W		XXXXXXXX
7Dн	PWM2 Compare Register 3	PWC23	R/W	Stepping Motor	XXXXXXXX
7Ен	PWM1 Select Register 3	PWS13	R/W	Controller 3	000000
7 Fн	PWM2 Select Register 3	PWS23	R/W		_ 0 0 0 0 0 0 0 0в
80н to 8Fн	CAN Controll	er. Refer to section	about CAN	Controller	
90н to 9Dн		Reserved			
9Ен	Program Address Detection Control Status Register	PACSR	R/W	Address Match Detection Function	0 0 0 0 0 0 0 0 0в
9Fн	Delayed Interrupt/Request Register	DIRR	R/W	Delayed Interrupt	0в
А0н	Low-Power Mode Control Register	LPMCR	R/W	Low Power Controller	0 0 0 1 1 0 0 0в
А1н	Clock Selection Register	CKSCR	R/W	Low Power Controller	11111100в
А2н to А7н		Reserved	<u> </u>		
А8н	Watchdog Timer Control Register	WDTC	R/W	Watchdog Timer	XXXXX 1 1 1 _B
А9н	Time Base Timer Control Register	TBTC	R/W	Time Base Timer	100100в
AAн to ADн		Reserved	1		
АЕн	Flash Memory Control Status Register (MB90F598G only. Otherwise reserved)	FMCS	R/W	Flash Memory	0 0 0 X 0 0 0 0 _B
AFн		Reserved	•		

Address	Register	Abbreviation	Access	Peripheral	Initial value
В0н	Interrupt Control Register 00	ICR00	R/W		00000111В
В1н	Interrupt Control Register 01	ICR01	R/W	lata an est a catacilla a	00000111В
В2н	Interrupt Control Register 02	ICR02	R/W	Interrupt controller	00000111В
ВЗн	Interrupt Control Register 03	ICR03	R/W		00000111В
В4н	Interrupt Control Register 04	ICR04	R/W		00000111В
В5н	Interrupt Control Register 05	ICR05	R/W		00000111В
В6н	Interrupt Control Register 06	ICR06	R/W		00000111В
В7н	Interrupt Control Register 07	ICR07	R/W		00000111В
В8н	Interrupt Control Register 08	ICR08	R/W		00000111В
В9н	Interrupt Control Register 09	ICR09	R/W	lata an est a catacilla a	00000111В
ВАн	Interrupt Control Register 10	ICR10	R/W	Interrupt controller	00000111В
ВВн	Interrupt Control Register 11	ICR11	R/W		00000111В
ВСн	Interrupt Control Register 12	ICR12	R/W		00000111В
ВОн	Interrupt Control Register 13	ICR13	R/W		00000111в
ВЕн	Interrupt Control Register 14	ICR14	R/W		00000111в
ВГн	Interrupt Control Register 15	ICR15	R/W		00000111В
C0н to FFн		Rese	rved		
1900н	Reload Register L	PRLL0	R/W		XXXXXXXX
1901н	Reload Register H	PRLH0	R/W	16-bit Programmable	XXXXXXXXB
1902н	Reload Register L	PRLL1	R/W	Pulse Generator 0/1	XXXXXXXXB
1903н	Reload Register H	PRLH1	R/W		XXXXXXXX
1904н	Reload Register L	PRLL2	R/W		XXXXXXXX
1905н	Reload Register H	PRLH2	R/W	16-bit Programmable	XXXXXXXXB
1906н	Reload Register L	PRLL3	R/W	Pulse Generator 2/3	XXXXXXXX
1907н	Reload Register H	PRLH3	R/W		XXXXXXXX
1908н	Reload Register L	PRLL4	R/W		XXXXXXXX
1909н	Reload Register H	PRLH4	R/W	16-bit Programmable	XXXXXXXX
190Ан	Reload Register L	PRLL5	R/W	Pulse Generator 4/5	XXXXXXXX
190Вн	Reload Register H	PRLH5	R/W		XXXXXXXXB
190Сн	Reload Register L	PRLL6	R/W		XXXXXXXXB
190Он	Reload Register H	PRLH6	R/W	16-bit Programmable	XXXXXXXXB
190Ен	Reload Register L	PRLL7	R/W	Pulse Generator 6/7	XXXXXXXX
190Гн	Reload Register H	PRLH7	R/W		XXXXXXXX

Address	Register	Abbreviation	Access	Peripheral	Initial value
1910н	Reload Register L	PRLL8	R/W		XXXXXXXX
1911н	Reload Register H	PRLH8	R/W	16-bit Programmable Pulse	XXXXXXXX
1912н	Reload Register L	PRLL9	R/W	Generator 8/9	XXXXXXXX
1913н	Reload Register H	PRLH9	R/W		XXXXXXXX
1914н	Reload Register L	PRLLA	R/W	16-bit Programmable Pulse	XXXXXXXX
1915н	Reload Register H	PRLHA	R/W	Generator A/B	XXXXXXXX
1916н	Reload Register L	PRLLB	R/W	16-bit Programmable Pulse	XXXXXXXX
1917н	Reload Register H	PRLHB	R/W	Generator A/B	XXXXXXXX
1918н to 191Fн		Re	served		
1920н	Input Capture Register 0 (low-order)	IPCP0	R		XXXXXXXX
1921н	Input Capture Register 0 (high-order)	IPCP0	R		XXXXXXXX
1922н	Input Capture Register 1 (low-order)	IPCP1	R	Input Capture 0/1	XXXXXXXX
1923н	Input Capture Register 1 (high-order)	IPCP1	R		XXXXXXXX
1924н	Input Capture Register 2 (low-order)	IPCP2	R		XXXXXXXX
1925н	Input Capture Register 2 (high-order)	IPCP2	R	land Orahan 0/0	XXXXXXX
1926н	Input Capture Register 3 (low-order)	IPCP3	R	Input Capture 2/3	XXXXXXX
1927н	Input Capture Register 3 (high-order)	IPCP3	R		XXXXXXX
1928н	Output Compare Register 0 (low-order)	OCCP0	R/W		XXXXXXX
1929н	Output Compare Register 0 (high-order)	OCCP0	R/W	Output Compare 0/4	XXXXXXX
192Ан	Output Compare Register 1 (low-order)	OCCP1	R/W	- Output Compare 0/1 -	XXXXXXX
192Вн	Output Compare Register 1 (high-order)	OCCP1	R/W		XXXXXXX

Address	Register	Abbreviation	Access	Peripheral	Initial value		
192Сн	Output Compare Register 2 (low-order)	OCCP2	R/W		XXXXXXXX		
192Dн	Output Compare Register 2 (high-order)	OCCP2	R/W	Output Compare 2/3	XXXXXXXXB		
192Ен	Output Compare Register 3 (low-order)	OCCP3	R/W	Output Compare 2/3	XXXXXXXX		
192Fн	Output Compare Register 3 (high-order)	OCCP3	R/W		XXXXXXXXB		
1930н to 19FFн		Re	served				
1A00н to 1AFFн	CAN	Controller. Refer to	section abou	ut CAN Controller			
1В00н to 1ВFFн	CAN Controller. Refer to section about CAN Controller						
1С00н to 1EFFн		Re	served				
1FF0н	Program Address Detection Register 0 (low-order)				XXXXXXXXB		
1FF1н	Program Address Detection Register 0 (middle-order)	PADR0	R/W		XXXXXXXXB		
1FF2н	Program Address Detection Register 0 (high-order)			Address Match	XXXXXXXXB		
1FF3н	Program Address Detection Register 1 (low-order)			Detection Function	XXXXXXXXB		
1FF4н	Program Address Detection Register 1 (middle-order)	PADR1	R/W		XXXXXXXX		
1FF5н	Program Address Detection Register 1 (high-order)				XXXXXXXXB		
1FF6н to 1FFFн		Re	served				

■ Description for Read/Write

R/W : Readable/writable

R : Read only W : Write only

■ Description of initial value

0 : the initial value of this bit is "0".
1 : the initial value of this bit is "1".

X : the initial value of this bit is undefined.

_ : this bit is unused. the initial value is undefined.

Note: : Addresses in the range of 0000_H to 00FF_H, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading "X", and any write access should not be performed.

9. Can Controller

The CAN controller has the following features:

- Conforms to CAN Specification Version 2.0 Part A and B
 - □ Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
 - □ 29-bit ID and 8-byte data
 - □ Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
 - □ Two acceptance mask registers in either standard frame format or extended frame format
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz)

9.1 List of Control Registers

Address	Register	Abbreviation	Access	Initial Value	
000080н	Message buffer valid register	BVALR	R/W	0000000 00000000	
000081н	Wessage buller valid register	BVALK	TV/VV	0000000 0000000B	
000082н	Transmit request register	TREQR	R/W	00000000 00000000	
000083н		INEQI	10,44	00000000 00000000	
000084н	Transmit cancel register	TCANR	W	00000000 00000000	
000085н	— Transmit cancer register	ICANK	VV	000000000000000000000000000000000000000	
000086н	Transmit complete register	TCR	R/W	0000000 0000000	
000087н	Transmit complete register	TOR	R/VV	00000000 00000000В	
000088н	Receive complete register	RCR	R/W	0000000 00000000	
000089н	Receive complete register	ROR	R/VV	OUUUUUU UUUUUUB	
00008Ан	Domete request receiving register	RRTRR	R/W	0000000 00000000	
00008Вн	Remote request receiving register	KKIKK	FK/VV	33000000 00000000	
00008Сн	Receive overrun register	ROVRR	R/W	0000000 00000000	
00008Dн	Receive overrun register	KOVKK	R/VV	2000000 0000000B	
00008Ен	Receive interrupt enable register	RIER	R/W	0000000 00000000	
00008Fн	Receive interrupt enable register	RIER	FK/VV	0000000 0000000B	
001В00н	Control atatus na sistem	CSR	5444.5	00 000 0 0 4	
001В01н	Control status register	CSR	R/W, R	00000 00-1в	
001В02н	Landan and in diameter and independent	LEID	DAM	200 2000	
001В03н	Last event indicator register	LEIR	R/W	000-0000в	
001В04н		DIFC	Б	0000000 0000000	
001В05н	Receive/transmit error counter	RTEC	R	00000000 00000000	
001В06н	Dit timing a seriet of	DTD	DAM	44444444444444	
001В07н	Bit timing register	BTR	R/W	-1111111 11111111в	

Address	Register	Abbreviation	Access	Initial Value	
001В08н	- IDE register	IDER	R/W	XXXXXXXX XXXXXXXX	
001В09н	TIDE register	IDLIX	IVV	AAAAAAAAAAAAAAAA	
001В0Ан	- Transmit RTR register	TRTRR	R/W	00000000 00000000	
001В0Вн	Transmit iviiviegistei	TIXTIXIX	IVV	00000000 00000000	
001В0Сн	Remote frame receive waiting register	RFWTR	R/W	XXXXXXXX XXXXXXXX	
001В0Он	- Remote frame receive waiting register	NEWIK	IN/VV	AAAAAAA AAAAAAAB	
001В0Ен	Transmit interrupt enable register	TIER	R/W	00000000 00000000	
001В0Гн	- Transmit interrupt enable register	HER	IN/VV	0000000 0000000B	
001В10н				XXXXXXXX XXXXXXXX	
001В11н	Acceptance mask select register	AMSR	R/W	700000000000000000000000000000000000000	
001В12н	Acceptance mask select register			XXXXXXXX XXXXXXXX	
001В13н				AAAAAAAAAAAAAAAAAA	
001В14н				XXXXXXX XXXXXXXX	
001В15н	Acceptance mask register 0	AMR0	R/W	AAAAAAA AAAAAAAB	
001В16н	Acceptance mask register 0	AWKU	F/VV	XXXXX XXXXXXXXB	
001В17н				VVVV VVVVVVB	
001В18н				XXXXXXXX XXXXXXXXB	
001В19н	Acceptance mask register 1	AMR1	R/W		
001В1Ан	Acceptance mask register 1	AWRI	r/VV	XXXXX XXXXXXXXB	
001В1Вн	7			^^^^^- ^^^^^^	

9.2 List of Message Buffers (ID Registers)

Address	Register	Abbreviation	Access	Initial Value	
001A00н to 001A1Fн	General-purpose RAM		R/W	XXXXXXXB to XXXXXXXXB	
001А20н				XXXXXXXX XXXXXXXX	
001А21н	ID register 0	IDR0	R/W	^^^^^	
001А22н	Tib register 0	IDRU	R/VV	XXXXX XXXXXXXXB	
001А23н				**************************************	
001А24н				XXXXXXX XXXXXXXB	
001А25н	ID register 1	IDR1 F	R/W	**************************************	
001А26н	Tib register i		IN/VV	XXXXX XXXXXXXXB	
001А27н				VVVV VVVVVVV	
001А28н				XXXXXXX XXXXXXXB	
001А29н	ID register 2	IDR2	R/W	7777777 7777778	
001А2Ан		IDRZ		XXXXX XXXXXXXXB	
001А2Вн					

Address	Register	Abbreviation	Access	Initial Value	
001А2Сн				XXXXXXX XXXXXXX _B	
001A2Dн	ID register 3	IDR3	R/W	**************************************	
001А2Ен	To register 5	IDIX5	IV/VV	XXXXX XXXXXXXX _B	
001А2Гн				XXXXX XXXXXXXB	
001А30н				XXXXXXX XXXXXXXB	
001А31н	ID register 4	IDR4	R/W	AAAAAAAA AAAAAAAAA	
001А32н	ID register 4	IDIX4	FX/VV	XXXXX XXXXXXXX _B	
001А33н				VVVV VVVVVVV	
001А34н			R/W	XXXXXXX XXXXXXXB	
001А35н	ID register 5	IDR5		700000000000000000000000000000000000000	
001А36н	To register 5	IDI(0		XXXXX XXXXXXXX _B	
001А37н				70000 7000000B	
001А38н				XXXXXXX XXXXXXX _B	
001А39н	ID register 6	IDR6	R/W	AAAAAAAA AAAAAAAAA	
001А3Ан	To register 0	IDIXO	IV/VV	XXXXX XXXXXXXX _B	
001А3Вн				VVVVV VVVVVVVR	
001А3Сн				XXXXXXX XXXXXXX	
001А3Dн	ID register 7	IDR7	R/W	WAYAAAAAAAAAAA	
001А3Ен	In register /	IDK/	TV/VV	XXXXX XXXXXXXX	
001А3Гн				XXXXX XXXXXXXB	

Address	Register	Abbreviation	Access	Initial Value	
001А40н				VVVVVVV VVVVVVVV	
001А41н	ID register 8	IDR8	R/W	XXXXXXX XXXXXXXB	
001А42н	Tib register o	IDRO	F/VV	XXXXX XXXXXXXXB	
001А43н				VVVV VVVVVVR	
001А44н				XXXXXXX XXXXXXX	
001А45н	ID register 9	IDR9	R/W	VVVVVV VVVVVR	
001А46н	ID register 9	IDIO	1000	XXXXX XXXXXXXXB	
001А47н				XXXX XXXXXXXB	
001А48н				XXXXXXX XXXXXXX8	
001А49н	ID register 10	IDR10	R/W	7000000 70000000	
001А4Ан	15 10910101 10	151(10	1000	XXXXX XXXXXXXXB	
001А4Вн				70000 70000000	
001А4Сн				XXXXXXX XXXXXXX	
001А4Дн	ID register 11	IDR11	R/W	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
001А4Ен		IBIXII	1000	XXXXX XXXXXXXXB	
001А4Гн				700000 700000000	
001А50н			R/W	XXXXXXX XXXXXXX	
001А51н	ID register 12	IDR12		,00000000000000000000000000000000000000	
001А52н				XXXXX XXXXXXXXB	
001А53н				100000000000000000000000000000000000000	
001А54н				XXXXXXX XXXXXXXB	
001А55н	ID register 13	IDR13	R/W		
001А56н		-		XXXXX XXXXXXXXB	
001А57н					
001А58н				XXXXXXXX XXXXXXXX	
001А59н	ID register 14	IDR14	R/W		
001А5Ан				XXXXX XXXXXXXXB	
001А5Вн					
001А5Сн	1			XXXXXXXX XXXXXXXXB	
001A5Dн	ID register 15	IDR15	R/W		
001А5Ен				XXXXX XXXXXXXXB	
001А5Гн					

9.3 List of Message Buffers (DLC Registers and Data Registers)

Address	Message Buffers (DLC Registers a Register	Abbreviation	Access	Initial Value	
001А60н	regiotor	Abbioviation	Added	miliai valuo	
001А61н	DLC register 0	DLCR0	R/W	XXXX _B	
001A62н					
001А63н	DLC register 1	DLCR1	R/W	XXXX _B	
001А64н					
001А65н	- DLC register 2	DLCR2	R/W	XXXX _B	
001А66н	DI Consiste 2	DI CD2	DAM	VVVV	
001А67н	- DLC register 3	DLCR3	R/W	XXXX _B	
001А68н	DLC register 4	DLCR4	R/W	XXXX _B	
001А69н	DEC register 4	DEGI(4	1000	XXXXB	
001А6Ан	DLC register 5	DLCR5	R/W	XXXX _B	
001А6Вн	DEG (og.oto) o	BESINO		7000	
001А6Сн	DLC register 6	DLCR6	R/W	XXXX _B	
001A6Dн	J T				
001А6Ен	DLC register 7	DLCR7	R/W	XXXX _B	
001А6Гн					
001A70н 001A71н	DLC register 8	DLCR8	R/W	XXXX	
001A71н 001A72н					
001A72н 001A73н	DLC register 9	DLCR9	R/W	XXXX _B	
001А74н					
001А75н	DLC register 10	DLCR10	R/W	XXXX _B	
001А76н	5.0	51.0544	5.044	2000/	
001А77н	- DLC register 11	DLCR11 R/W		XXXX _B	
001А78н	DLC register 12	DI CD42	R/W	XXXX _B	
001А79н	DLC register 12	DLCR12	R/VV	AAAB	
001А7Ан	DLC register 13	DLCR13	R/W	XXXX _B	
001А7Вн	DECK 13		1000		
001А7Сн	DLC register 14	DLCR14	R/W	XXXX _B	
001А7Dн	5:				
001А7Ен	DLC register 15	DLCR15	R/W	XXXX _B	
001A7Fн					
001A80н to 001A87н	Data register 0 (8 bytes)	DTR0	R/W	XXXXXXXB to XXXXXXXXB	

Address	Register	Abbreviation	Access	Initial Value
001A88н to 001A8Fн	Data register 1 (8 bytes)	DTR1	R/W	XXXXXXXB to XXXXXXXXB
001A90н to 001A97н	Data register 2 (8 bytes)	DTR2	R/W	XXXXXXXB to XXXXXXXXB
001A98н to 001A9Fн	Data register 3 (8 bytes)	DTR3	R/W	XXXXXXXB to XXXXXXXXB
001AA0н to 001AA7н	Data register 4 (8 bytes)	DTR4	R/W	XXXXXXXB to XXXXXXXXB
001AA8н to 001AAFн	Data register 5 (8 bytes)	DTR5	R/W	XXXXXXXB to XXXXXXXXB
001AB0н to 001AB7н	Data register 6 (8 bytes)	DTR6	R/W	XXXXXXXB to XXXXXXXXB
001AB8н to 001ABFн	Data register 7 (8 bytes)	DTR7	R/W	XXXXXXXB to XXXXXXXXB
001AC0н to 001AC7н	Data register 8 (8 bytes)	DTR8	R/W	XXXXXXXB to XXXXXXXXB
001AC8н to 001ACFн	Data register 9 (8 bytes)	DTR9	R/W	XXXXXXXB to XXXXXXXXB
001AD0н to 001AD7н	Data register 10 (8 bytes)	DTR10	R/W	XXXXXXXB to XXXXXXXXB
001AD8н to 001ADFн	Data register 11 (8 bytes)	DTR11	R/W	XXXXXXXB to XXXXXXXXB
001AE0н to 001AE7н	Data register 12 (8 bytes)	DTR12	R/W	XXXXXXXB to XXXXXXXXB
001AE8н to 001AEFн	Data register 13 (8 bytes)	DTR13	R/W	XXXXXXXB to XXXXXXXXB
001AF0н to 001AF7н	Data register 14 (8 bytes)	DTR14	R/W	XXXXXXXB to XXXXXXXXB
001AF8н to 001AFFн	Data register 15 (8 bytes)	DTR15	R/W	XXXXXXXB to XXXXXXXXB

10. Interrupt Source, Interrupt Vector, and Interrupt Control Register

Inda	El ² OS	Interru	pt vector	Interrupt co	ntrol register
Interrupt source	clear	Number	Address	Number	Address
Reset	N/A	# 08	FFFFDCH		
INT9 instruction	N/A	# 09	FFFFD8 _H		
Exception	N/A	# 10	FFFFD4 _H		
CAN RX	N/A	# 11	FFFFD0 _H	10000	000000
CAN TX/NS	N/A	# 12	FFFFCCH	ICR00	0000В0н
External Interrupt (INT0/INT1)	*1	# 13	FFFFC8 _H	10004	000001
Time Base Timer	N/A	# 14	FFFFC4 _H	ICR01	0000В1н
16-bit Reload Timer 0	*1	# 15	FFFFC0 _H	ICDOS	000000
8/10-bit A/D Converter	*1	# 16	FFFFBCH	ICR02	0000В2н
16-bit Free-run Timer	N/A	# 17	FFFFB8 _H	LODGO	000000
External Interrupt (INT2/INT3)	*1	# 18	FFFFB4 _H	ICR03	0000ВЗн
Serial I/O	*1	# 19	FFFFB0н	ICD04	0000004
External Interrupt (INT4/INT5)	*1	# 20	FFFFACH	ICR04	0000В4н
Input Capture 0	*1	# 21	FFFFA8 _H	ICDOF	0000В5н
8/16-bit PPG 0/1	N/A	# 22	FFFFA4 _H	- ICR05	
Output Compare 0	*1	# 23	FFFFA0 _H	ICR06	0000В6н
8/16-bit PPG 2/3	N/A	# 24	FFFF9C _H		
External Interrupt (INT6/INT7)	*1	# 25	FFFF98⊦	10007	0000В7н
Input Capture 1	*1	# 26	FFFF94 _H	ICR07	
8/16-bit PPG 4/5	N/A	# 27	FFFF90 _H	ICDOS	000000
Output Compare 1	*1	# 28	FFFF8C _H	ICR08	0000В8н
8/16-bit PPG 6/7	N/A	# 29	FFFF88 _H	ICDOO	000000
Input Capture 2	*1	# 30	FFFF84 _H	ICR09	0000В9н
8/16-bit PPG 8/9	N/A	# 31	FFFF80 _H	ICD10	000000
Output Compare 2	*1	# 32	FFFF7C _H	ICR10	0000ВАн
Input Capture 3	*1	# 33	FFFF78⊦	ICR11	0000ВВн
8/16-bit PPG A/B	N/A	# 34	FFFF74 _H	ICKII	ООООББН
Output Compare 3	*1	# 35	FFFF70⊦	ICR12	000000
16-bit Reload Timer 1	*1	# 36	FFFF6C _H	ICR12	0000ВСн
UART 0 RX	*2	# 37	FFFF68⊦	ICB12	000000
UART 0 TX	*1	# 38	FFFF64 _H	ICR13	0000ВDн
UART 1 RX	*2	# 39	FFFF60 _H	ICD14	00000
UART 1 TX	*1	# 40	FFFF5C _H	ICR14	0000ВЕн
Flash Memory	N/A	# 41	FFFF58⊦	ICD45	000000
Delayed interrupt	N/A	# 42	FFFF54 _H	ICR15	0000ВFн

^{*1:} The interrupt request flag is cleared by the El²OS interrupt clear signal.

N/A:The interrupt request flag is not cleared by the El²OS interrupt clear signal.

^{*2:} The interrupt request flag is cleared by the El²OS interrupt clear signal. A stop request is available.

Notes:

- For a peripheral module with two interrupt for a single interrupt number, both interrupt request flags are cleared by the El²OS interrupt clear signal.
- At the end of El²OS, the El²OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the El²OS and in the meantime another interrupt flag is set by hardware event, the later event is lost because the flag is cleared by the El²OS clear signal caused by the first event. So it is recommended not to use the El²OS for this interrupt number.
- If El²OS is enabled, El²OS is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same El²OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the El²OS, the other interrupt should be disabled.

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

 $(V_{SS} = AV_{SS} = 0.0 \text{ V})$

Davamatav	Cymphel	Rat	ting	Unit	Remarks		
Parameter	Symbol	Min	Max	Unit			
	Vcc	Vss - 0.3	Vss + 6.0	V			
	AVcc	Vss - 0.3	Vss + 6.0	V	Vcc = AVcc	*1	
Power supply voltage	AVRH, AVRL	Vss - 0.3			*1		
	DVcc	Vss - 0.3	Vss + 6.0	V	Vcc ≥ DVcc		
Input voltage	Vı	Vss - 0.3	Vss + 6.0	V		*2	
Output voltage	Vo	Vss - 0.3	Vss + 6.0	V		*2	
Maximum Clamp Current	ICLAMP	-2.0	2.0	mA	*6		
Maximum Total Clamp Current	∑ ICLAMP	_	20	mA	*6		
"L" level Max. output current	lol1	_	15	mA	Normal output	*3	
"L" level Avg. output current	lolav1	_	4	mA	Normal output, average value	*4	
"L" level Max. output current	lol2	_	40	mA	High current output	*3	
"L" level Avg. output current	lolav2	_	30	mA	High current output, average value	*4	
"L" level Max. overall output current	∑lol1	_	100	mA	Total normal output		
"L" level Max. overall output current	∑lol2	_	330	mA	Total high current output		
"L" level Avg. overall output current	∑lolav1	_	50	mA	Total normal output, average value	*5	
"L" level Avg. overall output current	∑lolav2	_	250	mA	Total high current output, average value	*5	
"H" level Max. output current	І он1	_	-15	mA	Normal output	*3	
"H" level Avg. output current	Iонаv1	_	-4	mA	Normal output, average value	*4	
"H" level Max. output current	10н2	_	-40	mA	High current output	*3	
"H" level Avg. output current	lohav2	_	-30	mA	High current output, average value	*4	
"H" level Max. overall output current	∑loн1	_	-100	mA	Total normal output		
"H" level Max. overall output current	∑lo _{H2}	_	-330	mA	Total high current output		
"H" level Avg. overall output current	∑Iohav1	_	-50	mA	Total normal output, average value	*5	
"H" level Avg. overall output current	∑Iohav2	_	-250	mA	Total high current output, average value	*5	
Dower consumption	Pp	_	500	mW	MB90F598G		
Power consumption	PD	_	400	mW	MB90598G		
Operating temperature	TA	-40	+85	°C			
Storage temperature	Тѕтс	-55	+150	°C			

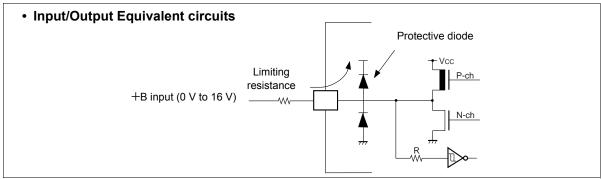
^{*1:} AVcc, AVRH, AVRL and DVcc shall not exceed Vcc. AVRH and AVRL shall not exceed AVcc. Also, AVRL shall never exceed AVRH.

*6:

- Applicable to pins: P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, P90 to P95
- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.

Document Number: 002-07700 Rev. *B

^{*2:} V_I and V_O should not exceed V_{CC} + 0.3V. V_I should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.


^{*3:} The maximum output current is a peak value for a corresponding pin.

^{*4:} Average output current is an average current value observed for a 100 ms period for a corresponding pin.

^{*5:} Total average current is an average current value observed for a 100 ms period for all corresponding pins.

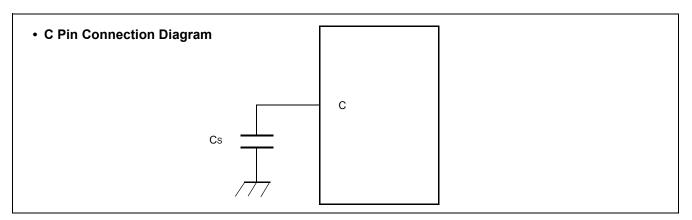
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits :

Note: : Average output current = operating current × operating efficiency

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

11.2 Recommended Conditions

 $(V_{SS} = AV_{SS} = 0.0 \text{ V})$


(100 71100 0.0 1)									
Parameter	Symbol	Value			Unit	Remarks			
	Syllibol	Min	Тур	Max	Oilit	Remarks			
Power supply voltage	Vcc	4.5	5.0	5.5	V	Under normal operation			
	AVcc	3.0	_	5.5	V	Maintains RAM data in stop mode			
Smooth capacitor	Cs	0.022	0.1	1.0	μF	*			
Operating temperature	TA	-40	_	+85	°C				

^{*:} Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

WARNING:

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

11.3 DC Characteristics

 $(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 \,^{\circ}C to +85 \,^{\circ}C)$

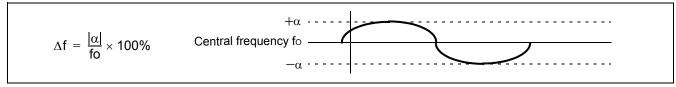
			(-,		,	
Parameter	Symbol	Pin name	Condition		Value	Unit	Remarks	
raiametei	Symbol	r III IIailie	Condition	Min	Тур	Max	Oiiit	Remarks
Input H voltage	VIHS	CMOS hysteresis input pin	_	0.8 Vcc	1	Vcc +0.3	٧	
	V _{IHM}	MD input pin	_	Vcc - 0.3	_	Vcc +0.3	٧	
Input L voltage		CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	٧	
	VILM	MD input pin	_	Vss - 0.3	_	Vss +0.3	V	
Output H	V _{OH1}	Output pins except P70 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OH1} = -4.0 \text{ mA}$	Vcc - 0.5	_	_	٧	
voltage	V _{OH2}	P70 to P87	$V_{CC} = 4.5 \text{ V},$ $I_{OH2} = -30.0 \text{ mA}$	Vcc - 0.5	_	_	٧	
Output L voltage	V _{OL1}	Output pins except P70 to P87	V _{CC} = 4.5 V, I _{OL1} = 4.0 mA	_	_	0.4	V	
	V _{OL2}	P70 to P87	Vcc = 4.5 V, lo _{L2} = 30.0 mA	_	_	0.5	٧	

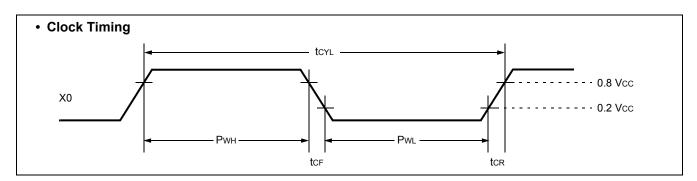
Parameter	Cumbal	Din nama	Condition		Value		Unit	Remarks
Farailletei	Symbol	Pin name	Condition	Min	Тур	Max	Ullit	Remarks
Input leak current	lıı		Vcc = 5.5 V, Vss < V _I < Vcc	- 5	_	5	μА	
Power supply current *	Icc		Vcc = 5.0 V±10%, Internal frequency:	_	35	60	mA	MB90598G
	ICC		16 MHz, At normal operating	_	40	60	mA	MB90F598G
	Iccs		Vcc = 5.0 V±10%, Internal frequency: 16 MHz, At sleep	_	11	18	mA	
	Істѕ	Vcc	Vcc = 5.0 V±1%, Internal frequency: 2 MHz, At timer mode	_	0.3	0.6	mA	
	Іссн		Vcc = 5.0 V±10%, At stop, T _A = 25°C	_	_	20	μА	
	lasus	CH2	Vcc = 5.0 V±10%, At Hardware stand-	_	_	20	μА	MB90598G
	Іссн2		by mode, T _A = 25°C	_	50	100	μА	MB90F598G

(Vcc = 5.0 V
$$\pm$$
10%, Vss = AVss = 0.0 V, Ta = -40 °C to +85 °C)

Parameter S	Symbol	Pin name	Condition		Value	Unit	Remarks	
	Symbol	Fili lialile	Condition	Min	Тур	Max	Onne	Nemarks
Input capacity	Cin	Other than C, AVcc, AVss, AVRH, AVRL, Vcc, Vss, DVcc, DVss, P70 to P87	_	_	5	15	pF	
	P70 to P87	_	_	15	30	pF		
Pull-up resistance	Rup	RST	_	25	50	100	k Ω	
Pull-down resistance	RDOWN	MD2	1	25	50	100	kΩ	

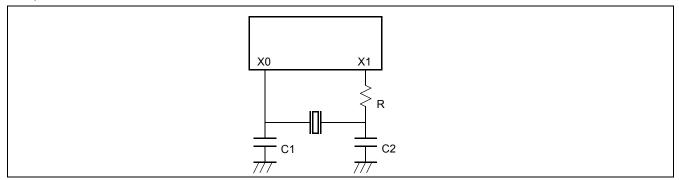
^{*:} The power supply current testing conditions are when using the external clock.

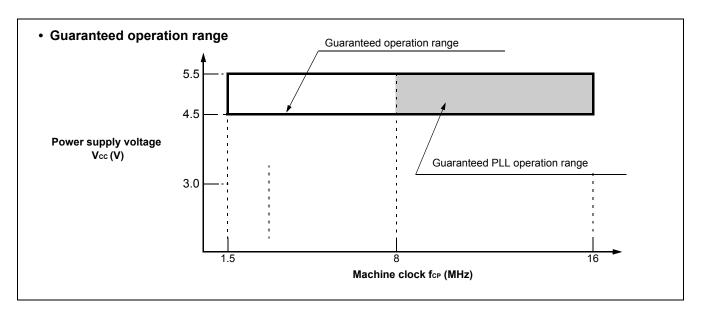

11.4 AC Characteristics

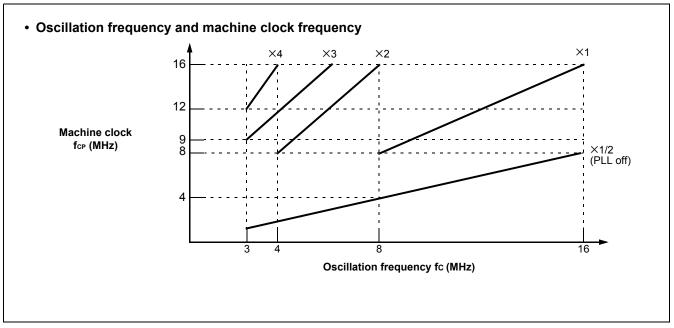

11.4.1 Clock Timing

$$(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 ^{\circ}C to +85 ^{\circ}C)$$

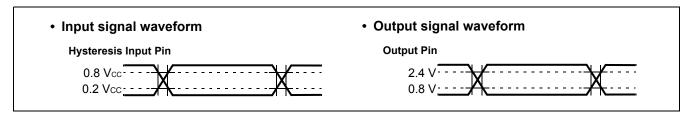
Parameter	Symbol	Pin name		Value		Unit	Remarks	
Parameter	Symbol	Pili lialile	Min	Тур	Max	Ullit		
Oscillation frequency	fc	X0, X1	3	_	5	MHz	When using oscillation circuit	
Oscillation cycle time	tcyL	X0, X1	200	_	333	ns	When using oscillation circuit	
External clock frequency	fc	X0, X1	3	_	16	MHz	When using external clock	
External clock cycle time	tcyL	X0, X1	62.5	_	333	ns	When using external clock	
Frequency deviation with PLL *	Δf	_	_	_	5	%		
Input clock pulse width	Pwh, PwL	X0	10	_	_	ns	Duty ratio is about 30 to 70%.	
Input clock rise and fall time	tcr, tcf	X0	_	_	5	ns	When using external clock	
Machine clock frequency	fcp	_	1.5	_	16	MHz		
Machine clock cycle time	t CP	_	62.5	_	666	ns		
Flash Read cycle time	tcyL	_	_	2*tcp	_	ns	When Flash is accessed via CPU	


^{*:} Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.



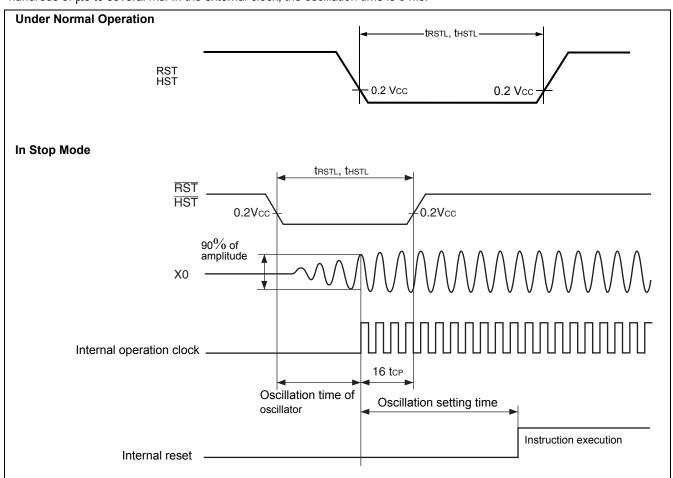


■ Example of Oscillation circuit



AC characteristics are set to the measured reference voltage values below.

11.4.2 Reset and Hardware Standby Input


$(Vcc = 5.0 V \pm 10\%)$, Vss $=$ AVss $=$ 0.0 V, Ta $=$ -40°	°C to +85 °C)
--------------------------	--	---------------

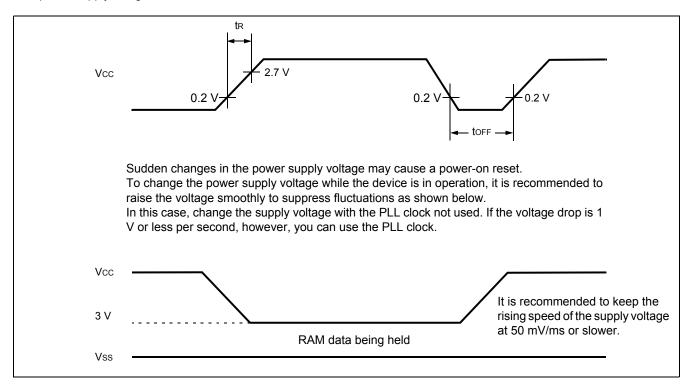
Parameter	Symbol	Pin name	Value		Unit	Remarks
r ai ailletei	Symbol	riii iiaiiie	Min	Max	o iii	Remarks
		trstl RST	16 tcp*1	1	ns	Under normal operation
Reset input time	t rstl		Oscillation time of oscillator*2 + 16 tcp*1		ms	In stop mode
			16 t _{CP} *1	16 tcp*1 —		Under normal operation
Hardware standby input time	t HSTL	HST	Oscillation time of oscillator*2 + 16 tcp*1		ms	In stop mode

- *1: "t_{cp}" represents one cycle time of the machine clock.

 No reset can fully initialize the Flash Memory if it is performing the automatic algorithm.
- *2: Oscillation time of oscillator is time that the amplitude reached the 90%.

 In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

11.4.3 Power On Reset


$Vcc = 5.0 V \pm 10\%$	$V_{SS} = AV_{SS} = 0.0 V, T_{A} = -10.0 V$	-40 °C to +85 °C)
------------------------	---	-------------------

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
raidilletei	Syllibol	Filitialile	Condition	Min	Max	Oiiit	Kemarks
Power on rise time	t R	Vcc		0.05	30	ms	*
Power off time	t off	Vcc	_	50	_	ms	Due to repetitive operation

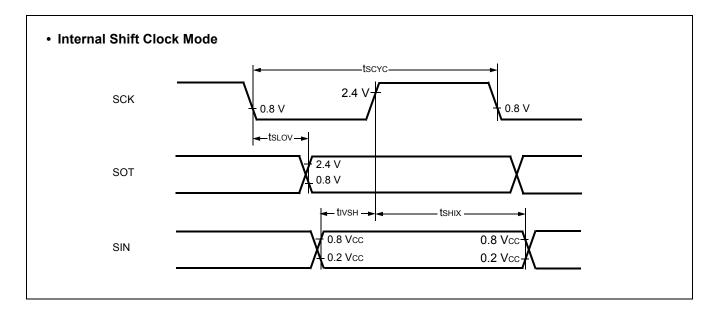
^{*:} Vcc must be kept lower than 0.2 V before power-on.

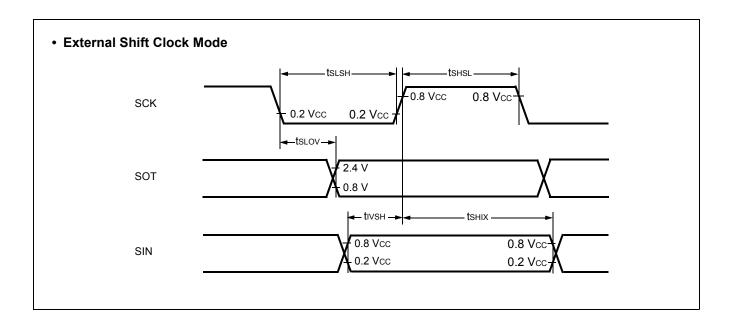
Notes:

- The above values are used for creating a power-on reset.
- Some registers in the device are initialized only upon a power-on reset. To initialize these registers, turn on the power supply using the above values.

11.4.4 UARTO/1, Serial I/O Timing

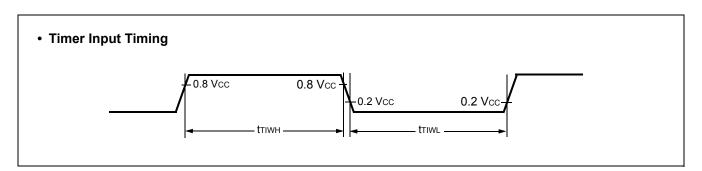
(Vcc = 5.0 V \pm 10%, Vss = AVss = 0.0 V, T_A = -40 °C to +85 °C)


Parameter	Symbol	Pin name	name Condition -	Value		Unit	Remarks
raidilletei	- Till Hame		Condition	Min	Max	Oilit	
Serial clock cycle time	tscyc	SCK0 to SCK2		8 tcp	_	ns	
$SCK \downarrow \Rightarrow SOT$ delay time	t sLov	SCK0 to SCK2, SOT0 to SOT2	Internal clock operation	-80	80	ns	
Valid SIN ⇒ SCK ↑	tıvsн	SCK0 to SCK2, SIN0 to SIN2	output pins are C _L = 80 pF + 1 TTL.	100	_	ns	
SCK ↑ ⇒ Valid SIN hold time	t shix	SCK0 to SCK2, SIN0 to SIN2		60	1	ns	


Parameter	Symbol Pin name		Condition	Value		Unit	Remarks
Parameter			Condition	Min	Max	Ullit	Remarks
Serial clock "H" pulse width	tshsl	SCK0 to SCK2		4 tcp	_	ns	
Serial clock "L" pulse width	t slsh	SCK0 to SCK2		4 tcp	_	ns	
$SCK \downarrow \Rightarrow SOT$ delay time	t sLOV	SCK0 to SCK2, SOT0 to SOT2	External clock operation output pins are C _L = 80	_	150	ns	
Valid SIN ⇒ SCK ↑	t ıvsh	SCK0 to SCK2, SIN0 to SIN2	pF + 1 TTL.	60	_	ns	
SCK ↑ ⇒ Valid SIN hold time	t shix	SCK0 to SCK2, SIN0 to SIN2		60	_	ns	

Notes:

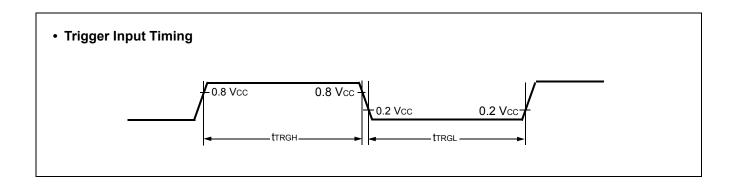
- AC characteristic in CLK synchronized mode.
- C_L is load capacity value of pins when testing.
- tcp (external operation clock cycle time) : see Clock timing.



(5) Timer Input Timing

$$(Vcc = 5.0 V \pm 10\%, Vss = AVss = 0.0 V, T_A = -40 \,^{\circ}C \text{ to } +85 \,^{\circ}C)$$

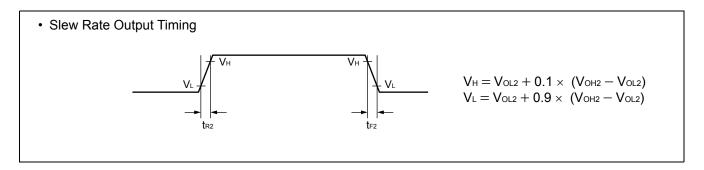
Parameter	Symbol Pin name		Condition	Va	lue	Unit	Remarks
raiailletei	Symbol	Fill liaille	Condition	Min	Max	Oilit	Remarks
Input pulse width	t тıwн	TIN0, TIN1	_	4 t _{CP}	_	ns	
input puise width	t tiwL	IN0 to IN3	_	4 (CP	_	115	



11.4.5 Trigger Input Timing

(Vcc = 5.0 V
$$\pm$$
10%, Vss = AVss = 0.0 V, Ta = -40 °C to +85 °C)

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks		
Farameter	Symbol	Min Max		Max	Offic	ixemarks			
Input pulse width	t TRGH	INT0 to INT7, ADTG	,			5 tcp	_	ns	Under normal operation
iliput puise widtii	t trgl				_	1	_	μs	In stop mode



11.4.6 Slew Rate High Current Outputs (MB90598G, MB90F598G only)

 $(V_{CC} = 5.0 \text{ V} \pm 10 \text{ %, Vss} = \text{AVss} = 0.0 \text{ V, T}_{A} = -40 ^{\circ}\text{C to } +85 ^{\circ}\text{C})$

Parameter	Symbol	Pin name	ame Condition		Value	Unit	Remarks	
Parameter	Symbol Fill hame		Condition	Min	Тур	Max	Ullit	Kemarks
Output Rise/Fall time	tr2 tF2	Port P70 to P77, Port P80 to P87	_	15	40	150	ns	

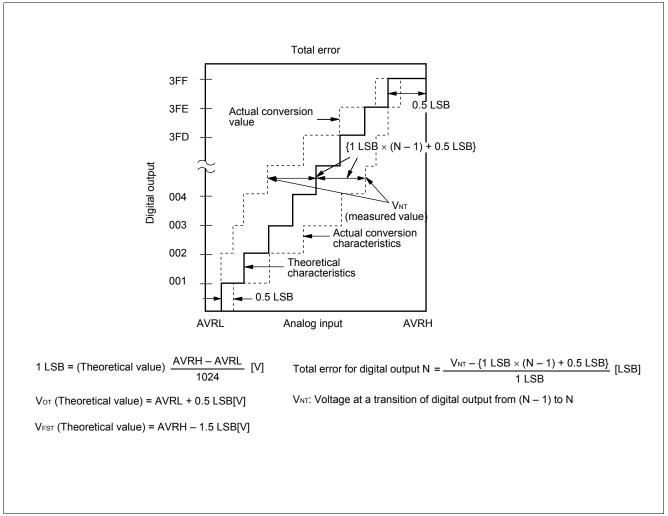
11.5 A/D Converter

(Vcc = AVcc = 5.0 V±10%, Vss = AVss = 0.0 V,3.0 V \leq AVRH - AVRL, TA = -40 $^{\circ}$ C to +85 $^{\circ}$ C)

Parameter	Sym-	Pin name		Value		Unit	Remarks	
raiailletei	bol	Fill lialite	Min	Тур	Max	Ollit	Kemarks	
Resolution	_	_	_		10	bit		
Conversion error	_	_	_	_	±5.0	LSB		
Nonlinearity error	_	_	_	_	±2.5	LSB		
Differential linearity error	_	_	_	_	±1.9	LSB		
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V		
Full scale transition voltage	V _{FST}	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V		
Conversion time	_	_	_	352tcp	_	ns		
Sampling time	_	_	_	64tcp	_	ns		
Analog port input current	Iain	AN0 to AN7	-10	_	10	μА		
Analog input voltage range	Vain	AN0 to AN7	AVRL	_	AVRH	V		

Parameter	Sym-	Pin name		Value		Unit	Remarks
Parameter	bol	Pili lialile	Min	Тур	Max	Offic	
Poforonco voltago rango	_	AVRH	AVRL + 3.0	_	AVcc	V	
Reference voltage range	_	AVRL	0	_	AVRH - 3.0	V	
Power supply current	la	AVcc	_	5	_	mA	
Fower supply current	Іан	AVcc	_	_	5	μΑ	*
	lR	AVRH	_	400	600	μΑ	MB90V595G, MB90F598G
Reference voltage current			_	140	600	μΑ	MB90598G
	lкн	AVRH	_		5	μΑ	*
Offset between input channels	_	AN0 to AN7	_	_	4	LSB	

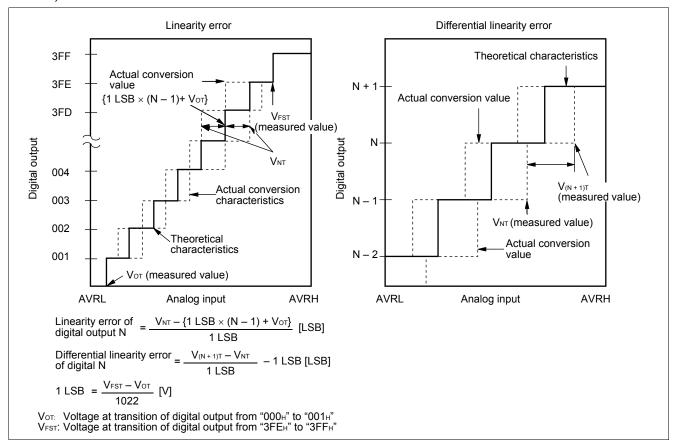
^{*:} When not operating A/D converter, this is the current (Vcc = AVcc = AVRH = 5.0 V) when the CPU is stopped.



11.6 A/D Converter Glossary

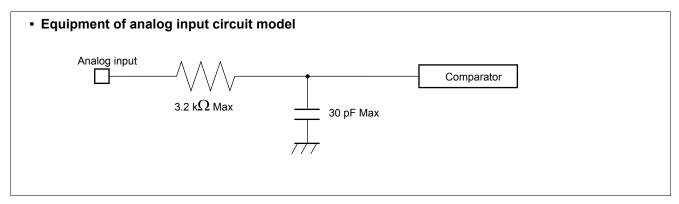
Resolution: Analog changes that are identifiable with the A/D converter

Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics


Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)

(Continued)



11.7 Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions,:

- Output impedance values of the external circuit of 15 k Ω or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

 When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = 4.00 µs @machine clock of 16 MHz).

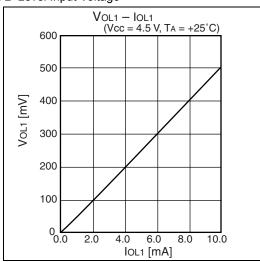
■ Error

The smaller the | AVRH - AVRL |, the greater the error would become relatively.

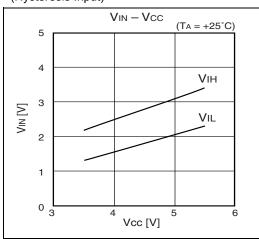
11.8 Flash memory

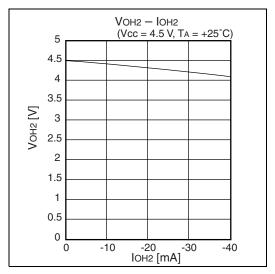
■ Erase and programming performance

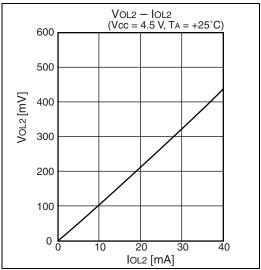
Parameter	Condition	Value			Unit	Remarks			
Parameter	Condition	Min	Тур	Max	Ullit	Nemarks			
Sector erase time		_	1	15	s	MB90F598G	Excludes 00H programming prior erasure		
Chip erase time	$T_A = +25$ °C, $V_{CC} = 5.0 \text{ V}$	_	5	_	s	MB90F598G	Excludes 00H programming prior		
Word (16-bit) programming time		_	16	3600	μs	MB90F598G	Excludes system-level overhead		
Erase/Program cycle	_	10000	_	_	cycle				



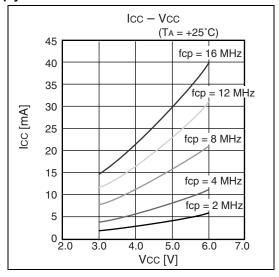
12. Example Characteristics

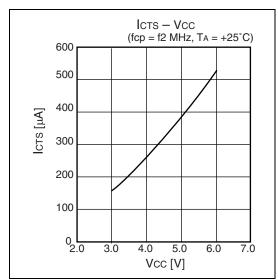

■ H" Level Output Voltage

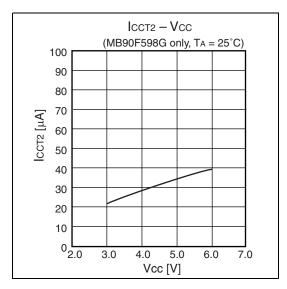


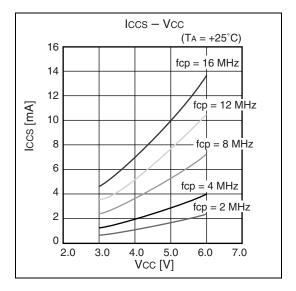

■ L" Level Input Voltage

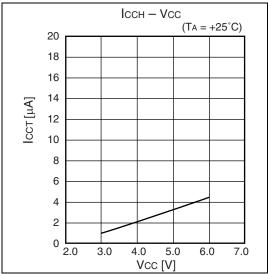
■ H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

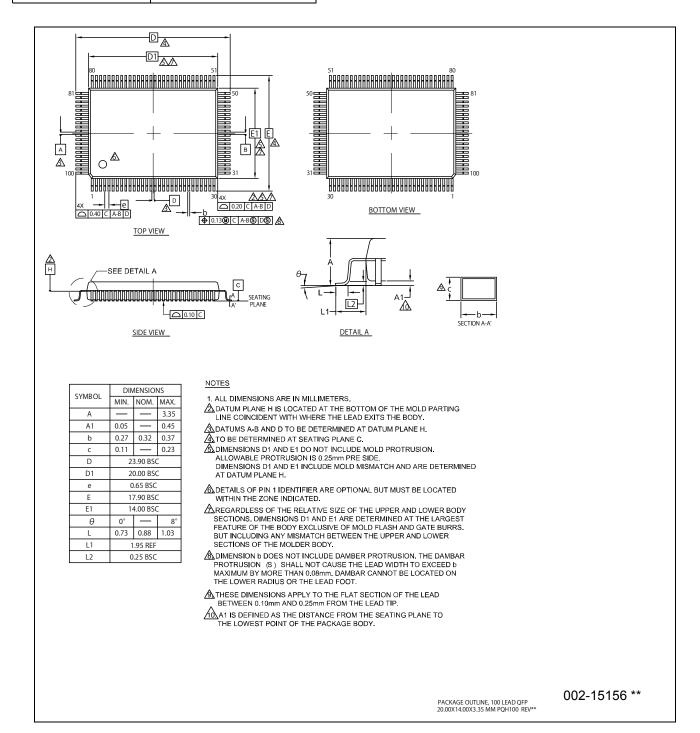









Supply Current


13. Ordering Information

Part number	Package	Remarks
MB90598GPF MB90F598GPF	100-pin Plastic QFP (PQH100)	
MB90V595GCR	256-pin Ceramic PGA	For evaluation

14. Package Dimensions

Package Type	Package Code
QFP 100	PQH100

15. Major Changes

Spansion Publication Number: DS07-13705-7E

Section	Change Results	
-	Deleted the old products, MB90598, MB90F598, and MB90V595.	
-	Changed the series name; MB90595/595G series ? MB90595G series	
_	Changed the following erroneous name. I/O timer → 16-bit Free-run Timer	
PRODUCT LINEUP	One of Standby mode name is changed. Clock mode → Watch mode	
I/O CIRCUIT TYPE	Changed Pull-down resistor value of circuit type H.	
ELECTRICAL CHARACTERISTICS AC Characteristics	Add the "External clock input" and "Flash Read cycle time" in (1) Clock Timing	
	Figure in (2) Reset and Hardware Standby Input RST/HST input level of "In Stop Mode" is changed. 0.6 Vcc 0.2 Vcc	
ELECTRICAL CHARACTERISTICS 5. A/D Converter	Changed the items of "Zero transition voltage" and "Full scale transition voltage".	

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB90598G/F598G/V595G F ² MC-16LX MB90595G Series CMOS 16-bit Proprietary Microcontroller Document Number: 002-07700					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	_	AKIH	09/26/2008	Migrated to Cypress and assigned document number 002-07700. No change to document contents or format.	
*A	5537128	AKIH	11/30/2016	Updated to Cypress template	
*B	6059031	TORS	02/06/2018	Adapted new Cypress logo Updated following package code FPT-100P-M06 → PQH100	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/usb

cypress.com/wireless

Products

USB Controllers

Wireless Connectivity

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing cypress.com/touch

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2008-2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress parally you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented to Cypress hardware or software products. Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not l

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-07700 Rev. *B Revised February 6, 2018 Page 52 of 52