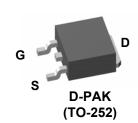
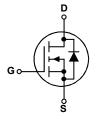


FDD6688S

30V N-Channel PowerTrench[®] SyncFET[™]

General Description


The FDD6688S is designed to replace a single TO-252 MOSFET and Schottky diode in synchronous DC:DC power supplies. This 30V MOSFET is designed to maximize power conversion efficiency, providing a low $R_{DS(ON)}$ and low gate charge. The FDD6688S includes an integrated Schottky diode using Fairchild's monolithic SyncFET technology.


Applications

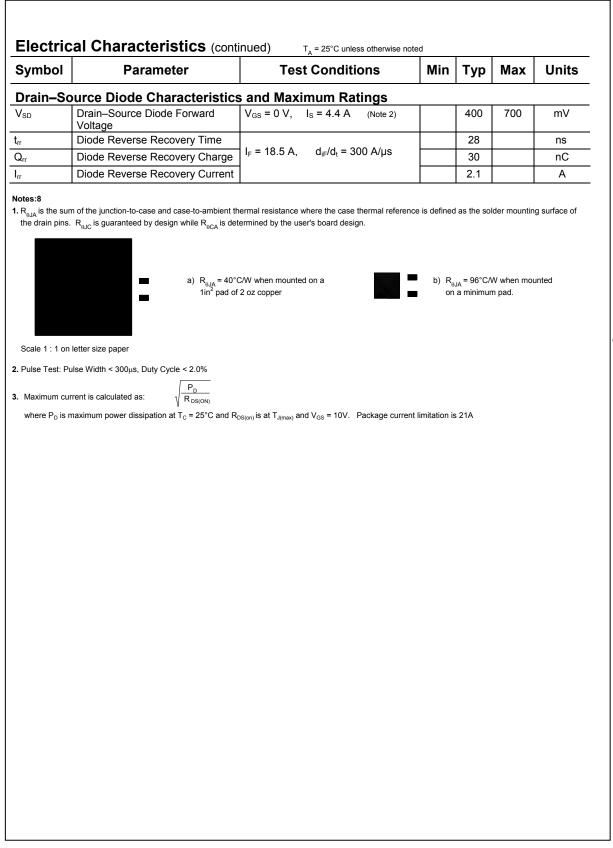
- DC/DC converter
- Motor Drives

Features

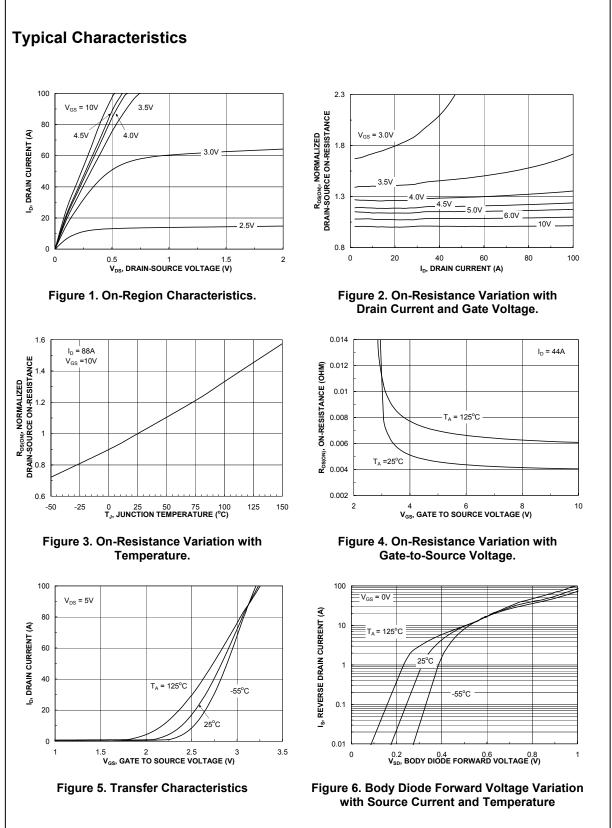
- 88 A, 30 V. $R_{DS(ON)} = 5.1 \text{ m}\Omega @ V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 6.3 \text{ m}\Omega @ V_{GS} = 4.5 \text{ V}$
- Low gate charge (31 nC typical)
- Fast switching
- High performance trench technology for extremely low R_{DS(ON)}

Absolute Maximum Ratings T_A=25°C unless otherwise noted

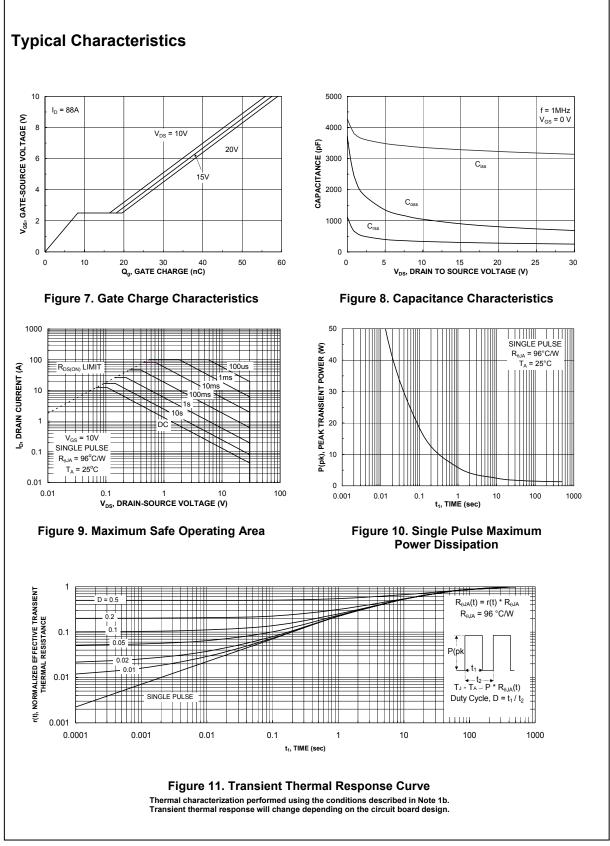
Symbol	Parameter			Ratings	Units
V _{DSS}	Drain-Source Voltage			30	V
V _{GSS}	Gate-Source Voltage			± 20	
D	Drain Current – Continuous	(Note 3)		88	A
	- Pulsed	(Note 1a)		100	
> _D	Power Dissipation for Single Operation	(Note 1)		69	W
		(Note 1a)		3.1	
		(Note 1b)		1.3	
T _J , T _{STG}	Operating and Storage Junction Temper	and Storage Junction Temperature Range		-55 to +150	
	Characteristics				
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	1.8		°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambier	nt (Note 1a)		40	
		(Note 1b)		96	
Package	e Marking and Ordering Info	ormation			
		Package	Reel Size	Tape width	Quantity


Device MarkingDevicePackageReel SizeTape widthQuantityFDD6688SFDD6688SD-PAK (TO-252)13"12mm2500 units

©2007 Fairchild Semiconductor Corporation

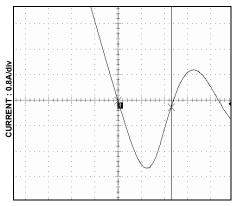

November 2007

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	ource Avalanche Ratings (No	te 2)	•			
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, V_{DD} = 15 V, I_D = 21A		501		mJ
I _{AR}	Drain-Source Avalanche Current				21	А
Off Char	acteristics					
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 1mA$	30			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	I_D = 10mA, Referenced to 25°C		24		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 V$, $V_{GS} = 0 V$			500	μA
I _{GSS}	Gate–Body Leakage	V_{GS} = ± 20 V, V_{DS} = 0 V			± 100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, \qquad I_D = 1 \text{mA}$	1	1.4	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 10mA, Referenced to 25°C		-4		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 10 V$, $I_D = 18.5 A$ $V_{GS} = 4.5 V$, $I_D = 16.5 A$ $V_{GS} = 10 V$, $I_D = 18.5 A$, $T_J=125^{\circ}C$		4.0 4.7 6.0	5.1 6.3 7.5	mΩ
g _{FS}	Forward Transconductance	$V_{DS} = 5 V$, $I_D = 18.5 A$		72		S
Dvnamio	Characteristics					
C _{iss}	Input Capacitance			3290		pF
Coss	Output Capacitance	$V_{\rm DS} = 15 \text{V}, \qquad \text{V}_{\rm GS} = 0 \text{V},$		900		pF
Crss	Reverse Transfer Capacitance	f = 1.0 MHz		300		pF
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz		1.6		Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time			13	23	ns
t _r	Turn–On Rise Time	$V_{DD} = 15 V$, $I_D = 1 A$,		13	23	ns
t _{d(off)}	Turn–Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω		31	50	ns
t _f	Turn–Off Fall Time			64	103	ns
Q _{g(TOT)}	Total Gate Charge at Vgs=10V			58	81	nC
Qg	Total Gate Charge at Vgs=5V	$V_{DD} = 15 V$, $I_D = 18.5 A$		31	44	nC
Q _{gs}	Gate–Source Charge	10.0 A		8		nC
Q _{gd}	Gate–Drain Charge			10		nC


٦

FDD6688S 30V N-Channel PowerTrench[®] SyncFETTM

FDD6688S 30V N-Channel PowerTrench[®] SyncFET[™]



FDD6688S 30V N-Channel PowerTrench[®] SyncFET™

Typical Characteristics (continued)

SyncFET Schottky Body Diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 12 shows the reverse recovery characteristic of the FDD6688S.

TIME : 12.5ns/div

Figure 12. FDD6688S SyncFET body diode reverse recovery characteristic.

For comparison purposes, Figure 13 shows the reverse recovery characteristics of the body diode of an equivalent size MOSFET produced without SyncFET (FDD6688).

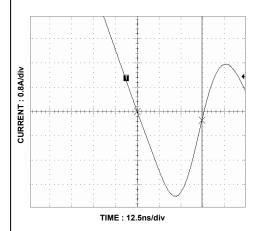


Figure 13. Non-SyncFET (FDD6688) body diode reverse recovery characteristic.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

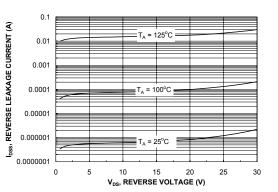
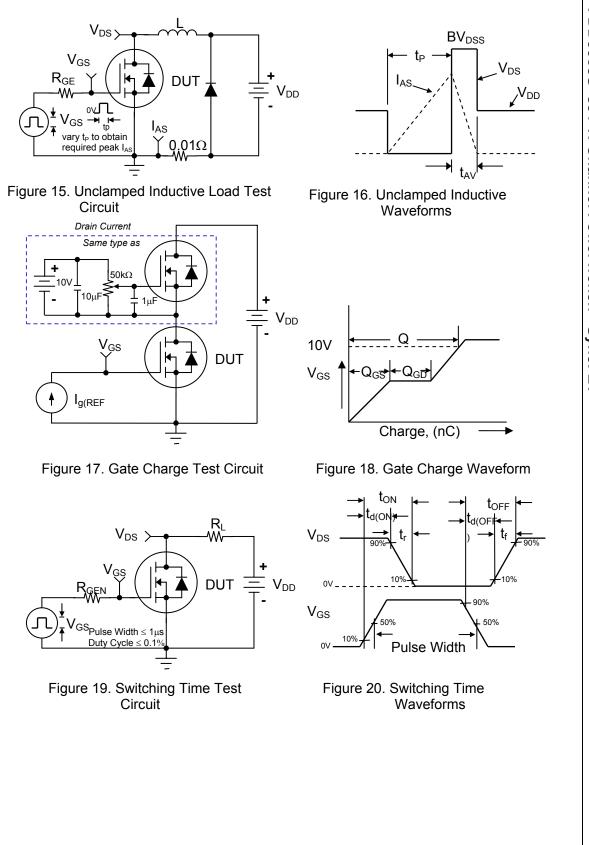



Figure 14. SyncFET body diode reverse leakage versus drain-source voltage and temperature.

FDD6688S 30V N-Channel PowerTrench[®] SyncFET™

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [®]	Green FPS™	Power247 [®]	SuperSOT™-8
Build it Now™	Green FPS™ e-Series™	POWEREDGE [®]	SyncFET™
CorePLUS™	GTO™	Power-SPM™	The Power Franchise [®]
CROSSVOLT™	<i>i-Lo</i> ™	PowerTrench [®]	franchise
CTL™	IntelliMAX™	Programmable Active Droop™	franchise
Current Transfer Logic™	ISOPLANAR™	QFET®	TinyBoost™
EcoSPARK [®]	MegaBuck™	QS™	TinyBuck™
F [®]	MICROCOUPLER™	QT Optoelectronics [™]	TinyLogic [®]
Fairchild [®]	MicroFET™	Quiet Series™	TINYOPTO™
Fairchild Semiconductor [®]	MicroPak™	RapidConfigure™	TinyPower™
FACT Quiet Series™	MillerDrive™	SMART START™	TinyPWM™
FACT [®]	Motion-SPM™	SPM®	TinyWire™
FAST [®]	OPTOLOGIC [®]	STEALTH™	µSerDes™
FastvCore™	OPTOPLANAR [®]	SuperFET™	UHC®
FPS™	0®	SuperSOT™-3	UniFET™
FRFET [®]	PDP-SPM™	SuperSOT™-6	VCX™
Global Power Resource SM	Power220 [®]		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild Semiconductor. The datasheet is printed for reference infor- mation only.

PRODUCT STATUS DEFINITIONS