

Phase-Locked Loop Clock Driver

Product Features

- High-Performance, Phase-Locked-Loop Clock Driver and zerodelay buffer
- Allows Clock Input to have Spread Spectrum modulation for EMI reduction
- Zero Input-to-Output delay
- Low jitter: Cycle-to-Cycle jitter ±75ps max.
- On-chip series damping resistor at clock output drivers for low noise and EMI reduction
- Operates at 3.3V V_{CC}
- Wide range of Clock Frequencies 80 to 134 MHz
- Package: Plastic 8-pin 150-mil SOIC(W) Plastic 8-pin 150-mil SOIC (WE) Pb-free

Product Description

The PI6C2501A features a low-skew, low-jitter, phase-locked loop (PLL) clock driver. By connecting the CLK_OUT output to the feedback FB_IN input, the propagation delay from the CLK_IN input to CLK OUT output will be nearly zero.

Application

1

If a system designer needs more than 16 outputs with the features just described, using two or more zero-delay buffers, such as the PI6C2509Q, or PI6C2510Q, is likely to be impractical. The device-to-device skew introduced can significantly reduce the performance. Pericom recommends using a zero-delay buffer and an eighteen output non-zero-delay buffer. As shown in Figure 1, this combination produces a zero-delay buffer with all the signal characteristics of the original zero-delay buffer, but with as many outputs as the non-zero-delay buffer part. For example, when combined with an eighteen output non-zero delay buffer, a system designer can create a seventeen-output zero-delay buffer.

Logic Block Diagram

Product Pin Configuration

Figure 1. This Combination Provides Zero-Delay Between the Reference Clock Signal and 17 Outputs

Pin Functions

Pin Name	Pin No.	Туре	Description	
CLK_IN	8	I	Reference Clock input. CLK_IN allows spread spectrum clock input.	
FB_IN	5	I	edback input. FB_IN provides the feedback signal to the internal PLL.	
CLK_OUT	3	0	clock output. This output provides a low-skew copy of CLK_IN. The output has an embedded eries-damping resistor.	
AV _{CC}	7	Power	Analog power supply. AV_{CC} can be also used to bypass the PLL for test purpose. When AV_{CC} is strapped to ground, PLL is bypassed and CLK_IN is buffered directly to the device outputs.	
AGND	1	Ground	Analog ground. AGND provides the ground reference for the analog circuitry.	
V _{CC}	4	Power	Power supply.	
GND	2, 6	Ground	Ground.	

DC Specifications⁽¹⁾ (Absolute maximum ratings over operating free-air temperature range)

Symbol	Parameter	Min.	Max.	Units
VI	Input voltage range		V .05	
Vo	Output voltage range -0.5		V _{CC} +0.5	V
V _{I_DC}	DC input voltage		3.8	
I _{O_DC}	DC output current		100	mA
Power	Maximum power dissipation at $T_A = 55^{\circ}C$ in still air		1.0	W
T _{STG}	Storage temperature	-65	150	°C

Note:

1. Stress beyond those listed under "absolute maximum ratings" may cause permanent damage to the device.

Parameter	Test Conditions	V _{CC}	Min.	Тур.	Max.	Units
I_{CC}	$V_I = V_{CC}$ or GND; $I_O = 0^{(2)}$ Standby Current	3.6V			10	μΑ
C_{I}	$V_{I} = V_{CC}$ or GND	3.3V		4		nΕ
Co	V _O =V _{CC} or GND	3.3 V		6		pF

Note:

2. Continuous Output Current

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
V_{CC}	Supply voltage	3.0	3.6	
$V_{ m IH}$	High level input voltage	2.0		W
V _{IL}	Low level input voltage		0.8	v
$V_{\rm I}$	Input voltage	0	V_{CC}	
T _A	Operating free-air temperature	0	70	°C

Electrical Characteristics (Over Recommended Operating Free-Air Temperature Range

Pull Up/Down Currents of PI6C2501A, V_{CC} = 3.0V)

Symbol	Parameter	Condition	Min.	Max.	Units	
Ĭ	Pull-up current	Vout = 2.4V		-13.6		
ІОН	Pull-up current	Vout = 2.0V		-22	mA	
I _{OL}	Pull-down current	Vout = 0.8V	19	19		
	Pull-down current	Vout = 0.55V	13			

AC Specifications

(Timing requirements over recommended ranges of supply voltage and operating free-air temperature)

Symbol	Parameter	Min.	Max.	Units
F _{CLK}	Clock frequency	80	134	MHz
D_{CYI}	Input clock duty cycle	40	60	%
	Stabilization Time after power up		1	ms

$Switching \ Characteristics^{(3)}$

(Over recommended ranges of supply voltage and operating free-air temperature, $C_L = 30 pF$)

Parameter	From (Input)	To (Output)	$V_{CC} = 3.3V \pm 0.3V, 0-70^{\circ}C$			Units
rarameter			Min.	Тур.	Max.	Units
tphase error without jitter	CLK_IN↑ at 100 & 66 MHz	FB_IN↑	-150		+150	ps
Jitter, cycle-to-cycle	At 100 & 66 MHz		-75		+75	PS
Duty cycle		CLV OUT	45		55	%
tr, rise-time, 0.4V to 2.0V		CLK_OUT		1.0		
tf, fall-time, 2.0V to 0.4V				1.1		ns

Note:

3. These switching parameters are guaranteed by design.

Package Mechanical Information: Plastic 8-pin SOIC Package.

Ordering Information

Ordering Code	Package Name	Package Type	Operating Range
PI6C2501AW	W	8-pin 150-mil SOIC	Commercial
PI6C2501AWE	W	8-pin 150-mil SOIC	Commercial

Pericom Semiconductor Corporation

2380 Bering Drive • San Jose, CA 95131 • 1-800-435-2336 • Fax (408) 435-1100 • http://www.pericom.com