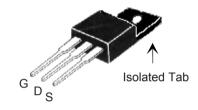


PolarHV[™] HiPerFET **IXFP 5N50PM Power MOSFET**

(Electrically Isolated Tab)

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

٥٥


Symbol	Test Conditions	Maximum Ratings			
V _{DSS}	$T_J = 25^{\circ} \text{ C to } 150^{\circ} \text{ C}$	500	V		
V _{DGR}	$T_J = 25^{\circ} \text{ C to } 150^{\circ} \text{ C}; R_{GS} = 1 \text{ M}\Omega$	500			
V _{GSS}	Continuous	± 30	V		
V _{GSM}	Transient	± 40			
 _{D25} _{DM}	$T_{\rm C} = 25^{\circ}$ C $T_{\rm C} = 25^{\circ}$ C, pulse width limited by $T_{\rm JM}$	3.2 10	A A		
I _{AR}	T _c = 25° C	5	A		
E _{AR}	T _c = 25° C	15	mJ		
E _{AS}	T _c = 25° C	150	mJ		
dv/dt	$I_s \leq I_{DM}$, di/dt ≤ 100 A/ μ s, $V_{DD} \leq V_{DSS}$, $T_J \leq 150$ °C, $R_G = 30$ Ω	10	V/ns		
$\overline{P_{D}}$	T _c = 25° C	38	W		
T _J		-55 +150	°C		
T _{JM}		150	°C		
T _{stg}		-55 +150	°C		
T _L	1.6 mm (0.062 in.) from case for 10 s	300	°C		
T _{SOLD}	Plastic body for 10 s	260	°C		
M _d Weight	Mounting torque	1.13/10	Nm/lb.in.		

OVERMOLDED TO-220 (IXTP...M) OUTLINE

 $R_{DS(on)}$

 \leq

≤ 200 ns

Features

- ¹ Plastic overmolded tab for electrical isolation
- Fast intrinsic diode
- ¹ International standard package
- ¹ Unclamped Inductive Switching (UIS)
- ¹ Low package inductance
 - easy to drive and to protect

Symbol (T _J = 25° C, t	Test Conditions unless otherwise specified)		Ch Min.	istic Val Max.	
BV _{DSS}	V_{GS} = 0 V, I_{D} = 250 μ A		500		V
$V_{\rm GS(th)}$	$V_{DS} = V_{GS}$, $I_{D} = 500 \mu A$		3.0	5.5	V
GSS	$V_{GS} = \pm 30 V_{DC}, V_{DS} = 0$			±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0 V$	T _J = 125° C		5 50	μ Α μ Α
R _{DS(on)}	V _{GS} = 10 V, I _D = 2.5 A Note 1			1.4	Ω

Advantages

- Easy to mount
- Space savings
- High power density

DS99508E(04/06) © 2006 IXYS All rights reserved

Symbo	ol	Test Conditions $(T_J$	C = 25° C, unless Min.	haracte s otherw ryp.		ecified)
\mathbf{g}_{fs}		V_{DS} = 10 V; I_{D} = 2.5 A, Note 1	3.0	4.7		S
\mathbf{C}_{iss})			620		pF
\mathbf{C}_{oss}	}	$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		72		pF
C _{rss}	J			6.3		pF
t _{d(on)})			28		ns
t _r	Ţ	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 5 \text{ A}$	Ą	28		ns
$\mathbf{t}_{d(off)}$		$R_{\rm G}$ = 30 Ω (External)		65		ns
t _f)			26		ns
$\mathbf{Q}_{g(on)}$)			12.6		nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10 \text{ V}, V_{DS} = 0.5 \text{ V}_{DSS}, I_{D} = 2.5$	Α	4.3		nC
\mathbf{Q}_{gd}	J			5.0		nC
R _{thJC}					3.3	°C/W

Source-Drain Diode

Characteristic Values (T. = 25° C unless otherwise specified)

Symbol	Test Conditions	Min.	Typ.	Max.	
Is	$V_{GS} = 0 V$			5	Α
I _{SM}	Repetitive			15	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0$ V, Note 1			1.5	V
t _{rr} Q _{RM} I _{RM}	$I_F = 5 \text{ A}, -di/dt = 100 \text{ A/}\mu\text{s},$ $V_R = 100 \text{ V}, V_{GS} = 0 \text{ V}$		0.15 1	200	ns μC Α

Notes:

1) Pulse test, t \leq 300 μ s, duty cycle d \leq 2 %

ISOLATED TO-220 (IXTP...M)

Terminals: 1 - Gate 2 - Drain (Collector)

2 - Drain (Collector) 3 - Source (Emitter)

MY2	INCHES		MILLIMETERS		
2114	MIN	MAX	MIN	MAX	
Α	.177	.193	4.50	4.90	
A1	.092	.108	2.34	2.74	
A2	.101	.117	2.56	2.96	
b	.028	.035	0.70	0.90	
b1	.050	.058	1.27	1.47	
С	.018	.024	0.45	0.60	
D	.617	.633	15.67	16.07	
E	.392	.408	9.96	10.36	
е	.100	BSC 2.5		BSC	
Н	.255	.271	6.48	6.88	
L	.499	.523	12.68	13.28	
L1	.119	.135	3.03	3.43	
ØΡ	.121	.129	3.08	3.28	
0	126	134	3.20	3.40	

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.