

Control Card in Digitally Controlled Off-Line Isolated Power Converters

This user's guide describes the characteristics, operation, and use of the UCD3138A64CEVM-660 evaluation module (EVM). The UCD3138A64CEVM-660 is a fully assembled and tested platform for evaluating the performance of the UCD3138A64 digital controller device from Texas Instruments. This document includes schematic diagrams, a printed circuit board (PCB) layout, bill of materials, and test data. Throughout this document, the abbreviations EVM, UCD3138A64CEVM, and the term evaluation module are synonymous with the UCD3138A64CEVM-660, unless otherwise noted.

Contents

1	Introdu	ntroduction							
2	Description								
	2.1	Typical Applications							
	2.2	Features							
	2.3	Configuring the EVM to Access EEPROM SPI or I ² C Communication with UCD3138A64							
3	Specif	ications							
4		natics							
5		Test Equipment							
	5.1	PC Computer							
	5.2	Oscilloscope							
6		ment Setup							
	6.1	Graphical User Interface (GUI)							
	6.2	Hardware Setup							
_	6.3	List of Test Points							
7		Procedure							
	7.1	Download Firmware Code to UCD3138A64EVM-660							
	7.2	Erase Firmware Code from UCD3138A64EVM-660.							
0	7.3	Equipment Shutdown							
8		Assembly Drawing and PCB layout							
9		Materials							
Appen	idix A	Summary of Using Code Composer Studio v5.5							
		List of Figures							
1	UCD3	JCD3138A64EVM-660 Schematics (1 of 2)							
2	UCD3	UCD3138A64EVM-660 Schematics (2 of 2)							
3	USB-to-GPIO Interface Adapter (HPA172)								
4	UCD3138A64EVM-660 Test Connections.								
5		UCD3xxx/UCD9xxx Device GUI							
6	Firmware Code Downloading								
7		UCD3138A64EVM-660 Top Layer Assembly Drawing (Top View)							
8	UCD3138A64EVM-660 Bottom Assembly Drawing (No Components)								
9	UCD3138A64EVM-660 Top Copper (Top View)								
10	UCD3138A64EVM-660 Internal Layer 1 (Top View)								
11	UCD3138A64EVM-660 Internal Layer 2 (Top View)								
12	UCD3	13A64CEVM-660 Bottom Copper (Top View)							

Introduction www.ti.com 13 14 15 16 17 List of Tables 1 2 3 4

1 Introduction

This UCD3138A64CEVM-660 evaluation module helps evaluate the UCD3138A64 digital controller device from Texas Instruments and aids in design of digitally controlled isolated power converters. The UCD3138A64 device belongs to the UCD3138 family of highly-integrated digital controller devices optimized for isolated power supply applications. Compared to the UCD3138 device, the UCD3138A64 device offers the following features:

Table 1. Key Differences Between UCD3138 and UCD3138A64

Product Features	UCD3138	UCD3138A64
Program Flash Memory	32 kB	64 kB
RAM	4 kB	8 kB
Number of Memory Banks	1 (32 kB)	2 (32 kB each)
SPI Communication Hardware	Not Available	Available (Pin Numbers 50, 51, 52, 53)
I ² C Communication Hardware (in addition to PMBUS)	Not Available	Available (Pin Numbers 19, 20)
Peak Current Mode Control	EADC2 Only	Available on all EADC channels
EADC A0 Min Output Voltage (Max)	100 mV	21 mV
RTC Function - External Clock Input	Not Available	Available (Pin Numbers 45, 62)
External PWM Timers	2	4
Timer Capture Modules	1	2
Total GPIO	30	43
ADC12 Inputs	14	15

For additional device information, see http://www.ti.com/product/ucd3138a64.

The UCD3138A64CEVM-660 is similar to the UCD3138CC64EVM-030. The UCD3138A64CEVM-660 is used either as a stand-alone control card to study the UCD3138A64 controller IC or as a DPWM controller board working with a power stage board to implement a fully-regulated power converter. To help the targeted off-line isolated power applications, this EVM has been designed to work seamlessly with two power converter EVMs offered by TI: UCD3138PSFBEVM-027, and UCD3138LLCEVM-028. Contact Texas Instruments for assistance obtaining the firmware source code used to interface the UCD3138A64 with these EVMs, which were originally developed to support the UCD3138 device. Alternately, the EVM can also be loaded with custom-developed firmware. In order to communicate with the UCD3138A64 digital controller in this EVM, a separate USB interface adapter EVM from Texas Instruments known as the <u>USB-TO-GPIO Adapter</u> is required. The USB-TO-GPIO Adapter is NOT supplied with UCD3138A64CEVM-660 evaluation module and must be purchased separately. Texas Instruments also offers a Graphical User Interface (GUI) in order to program the UCD3138A64 controller and configure parameters when used with the two power converter EVMs.

Microsoft, Windows are registered trademarks of Microsoft Corporation. All other trademarks are the property of their respective owners.

www.ti.com Description

2 Description

UCD3138A64CEVM-660 is an EVM board, functioning as a control card for UCD3138A64PFC digital power supply applications. This EVM is used to control a power converter topology such as LLC Resonant Half-Bridge DC converter, and Phase-Shifted Full-Bridge DC converter, and so forth, by downloading the associated firmware and interfacing with an appropriate power stage board. When coupled with the appropriate corresponding firmware, the EVM works seamlessly with the following EVM boards:

- UCD3138PSFBEVM-027, <u>A Digital Controlled Phase-Shifted Full-Bridge DC-to-DC Converter</u> Evaluation Board
- UCD3138LLCEVM-028, A Digital Controlled LLC Half-Bridge DC-to-DC Converter Evaluation board

Contact Texas Instruments for assistance with obtaining the firmware source code used to interface the UCD3138A64 with these EVMs.

2.1 Typical Applications

- Off-line isolated power supply applications such as, LLC resonant half-bridge dc-dc power converter, and phase-shifted full-bridge dc-dc power converter
- Server systems
- · Telecommunication systems

2.2 Features

- 40-pin digital signal connector to connect digital signals to power converters
- 40-pin analog signal connector to connect analog signals to power converters
- 2-Mbit SPI and I2C accessible EEPROMs for additional, onboard memory storage capacity
- JTAG connector
- LED indicator
- PMBus connector to PC computer connection through USB-to-GPIO adapter
- Rich test points to facilitate the IC evaluation, system design and circuit and firmware debugging

2.3 Configuring the EVM to Access EEPROM SPI or FC Communication with UCD3138A64

The UCD3138A64CEVM-660 contains all the features of the UCD3138CC64EVM-030. However, the UCD3138A64CEVM-660 adds two programmable EEPROM devices for use with the UCD3138A64 device – one accessed via SPI communication port and the other via the 2nd I²C port in UCD3138A64. Additionally, unlike the UCD3138064EVM-166, both EEPROMs can be accessed by the device simultaneously, since both SPI and I²C hardware have been assigned dedicated pins. Appropriate firmware is necessary to configure the UCD3138A64 device to choose the communication port desired. No hardware changes are required to interface with either the SPI or I²C EEPROMs.

- To choose I²C EEPROM, connect jumpers J9 and J10, each in position 1 (Pins 1 and 2). Also, make sure J7 and J8 are disconnected.
- To choose SPI EEPROM, connect jumpers J7 and J8 as well as jumpers J9 and J10, each in position 2 (Pins 2 and 3).

Specifications www.ti.com

3 Specifications

Table 2. UCD3138A64EVM-660 Specifications

Parameter	Notes and Conditions	Min	TYP	Max	Unit
Connector J1					
Analog signal connection	Pin definition in compliance with UCD3138	40 pin			
Connector J2					
Digital signal connection	Pin definition in compliance with UCD3138	40 pin			
Pin 39	External voltage source input	11.5	12.0	12.5	VDC
3.3-V connection to PMBus	Port to use on-board 3.3 V _{DC} to bias PMBus	3.25	3.30	3.35	VDC
Connector J3					
3.3-V on board to external use	Port to use 3.3 V on board to bias external circuit	3.27	3.30	3.32	VDC
Connector J4					
3.3-V connection to PMBus	Port to use on board 3.3 V _{DC} to bias or receive bias from PMBus	3.25	3.30	3.32	VDC
Connector J5					
PMBus connector PMBus Connection to USB to GPIO pin definition refer to TI standard USB-to-GPIO document SLLU093 Standard		ndard			
JTAG	Standard JTAG communication connection	Standard			
Connector J6					
JTAG	Standard JTAG communication connection	Standard			
Operation Environment					
Operating Temperature Range	Natural Convection	25		°C	
Mechanical Characterstic	s				
	Width		1.965		
Dimensions	Length	3.400		inches	
	Component height		0.5		

www.ti.com Schematics

4 Schematics

Figure 1 and Figure 2 illustrate the schematic information for this EVM.

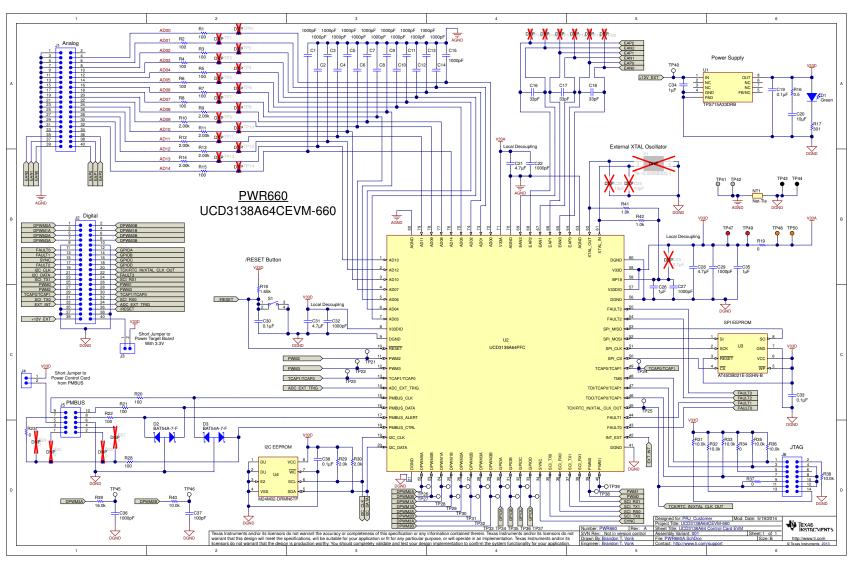


Figure 1. UCD3138A64EVM-660 Schematics (1 of 2)

Schematics www.ti.com

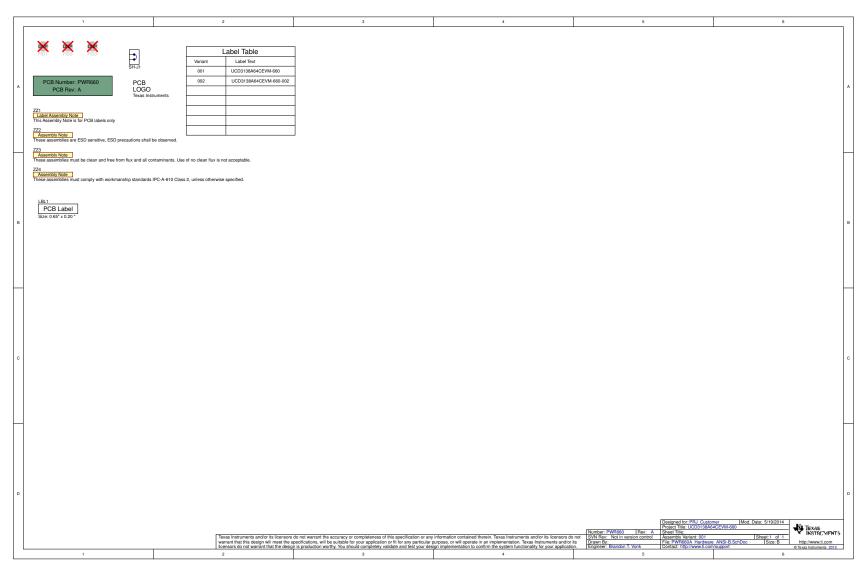


Figure 2. UCD3138A64EVM-660 Schematics (2 of 2)

www.ti.com Test Equipment

5 Test Equipment

5.1 PC Computer

5.1.1 Operating System

Microsoft® Windows® XP (32 bit), or Vista (32 bit), or Windows 7 (32 bit).

5.1.2 USB-to-GPIO Interface Adapter

This adapter is to establish the communication between the control card UCC3138A64EVM-660 and the PC computer through the PMBus and the *GUI, Texas Instruments Fusion Digital Power Designer*. To order the USB-to-GPIO adaptor, visit: http://www.ti.com/tool/usb-to-gpio

5.1.2.1 USB-to-GPIO Interface Adapter

Accessories including:

- USB interface adapter (HPA172)
- USB cable, 5-pin B Mini Male to Type A Male
- · Ribbon cable, socket to socket, 10 pin, 2 headers, polarized

Figure 3. USB-to-GPIO Interface Adapter (HPA172)

5.2 Oscilloscope

An analog or digital oscilloscope capable of 200-MHz bandwidth, with appropriate accompanying oscilloscope probe.

Equipment Setup www.ti.com

6 Equipment Setup

6.1 Graphical User Interface (GUI)

6.1.1 File for Installation

The GUI installation file is *TI-Fusion-Digital-Power-Designer-Version-1.9.54.exe* or newer version. Obtain the latest version of GUI from http://www.ti.com/tool/fusion_digital_power_designer.

6.1.2 Installation

Double click and launch the **.exe** file to start the installation. Click **Next** on the subsequent dialog windows. When present, click **I accept the agreement** after reading it, then click **Install**. After the installation, click **Finish** to exit setup, then click **Exit Program**.

6.1.3 Launch UCD3138A64 Device GUI

The GUI for the UCD3138A64EVM-660 board is launched with the following steps:

Click the Windows Start \rightarrow click All Programs \rightarrow click Texas Instruments Fusion Digital Power Designer \rightarrow click Device GUIs \rightarrow click UCD3xxx and UCD9xxx Device GUI.

6.2 Hardware Setup

6.2.1 Setup Overview

Figure 4 shows the connection between UCD3138A64EVM-660 and the PC computer through USB-to-GPIO Interface Adapter.

USB Adapter Connection:

- Connect one end of the ribbon cable to the EVM (PWR660) and connect the other end to the USB interface adapter.
- Connect the Mini-USB connector of the USB cable to the USB interface adapter and connect the other end to the USB port of the PC computer.

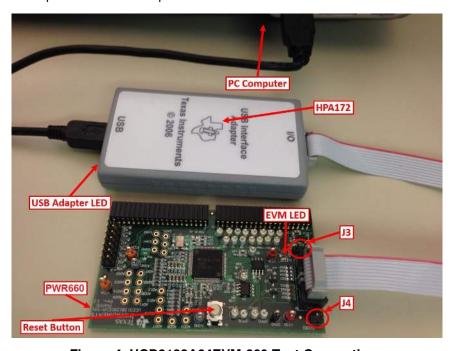


Figure 4. UCD3138A64EVM-660 Test Connections

www.ti.com Equipment Setup

6.3 List of Test Points

Table 3. Test Point Functions

Name	Description
3.3 VA	3.3-V analog on board
AD00	A to D converter channel AD00
AD01 to AD14	A to D converter channels AD01 to AD14
EAP2	Error A to D converter channel EAP2
EAN2	Error A to D converter channel EAN2
EAP1	Error A to D converter channel EAP1
EAN1	Error A to D converter channel EAN1
EAP0	Error A to D converter channel EAP0
EAN0	Error A to D converter channel EAN0
PWM2	Pulse-width modulated channel PWM2
PWM3	Pulse-width modulated channel PWM3
TCAP1/TCAP0	Timer capture input TCAP1 (or TCAP0, if alternately assigned)
TCAP0/TCAP1	Timer capture input TCAP0 (or TCAP1, if alternately assigned)
TCK/RTC_IN/RTC_OUT	JTAG TCK, or RTC_IN or RTC_OUT (10-MHz external digital clock input/output, if alternately assigned)
DPWM0A	Digital pulse-width modulated channel 0A
DPWM0B	Digital pulse-width modulated channel 0B
DPWM1A	Digital pulse-width modulated channel 1A
DPWM1B	Digital pulse-width modulated channel 1B
DPWM2A	Digital pulse-width modulated channel 2A
DPWM2B	Digital pulse-width modulated channel 2B
DPWM3A	Digital pulse-width modulated channel 3A
DPWM3B	Digital pulse-width modulated channel 3B
GPIOA	General purpose I/O pin A
GPIOB	General purpose I/O pin B
GPIOC	General purpose I/O pin C
GPIOD	General purpose I/O pin D
PWM0	Pulse-width modulated channel PWM2
PWM1	Pulse-width modulated channel PWM2
+12V_EXT	External 12 V _{DC} input to 3.3-V regulator
AGND	Analog ground test point
AGND	Analog ground test point
DGND	Digital ground test point
DGND	Digital ground test point
RC Filter 3A	DPWM3A RC Filter
RC Filter 2B	DPWM2B RC Filter
V33D	Digital 3.3-V _{DC} test point
V33A	Analog 3.3-V _{DC} test point
V33D	Digital 3.3-V _{DC} test point
V33A	Analog 3.3-V _{DC} test point
Analog Connection	40-pin header, analog signals, connects to target power stage EVM
Digital Connection	40-pin header, digital signals, connects to target power stage EVM
V33D	Jumper header, connect jumper to supply target board with 3.3 V _{DC}
V33D	Jumper header, if jump across, 3.3 V supplied from USB connection
PMBus Connection	PMBus connector, 10 pins
JTAG Connection	JTAG connector, 14 pin header
RESET	UCD3138A64 reset, push to reset
	3.3 VA AD00 AD01 to AD14 EAP2 EAN2 EAN1 EAP0 EAN0 PWM2 PWM3 TCAP1/TCAP0 TCAP0/TCAP1 TCK/RTC_IN/RTC_OUT DPWM0A DPWM0B DPWM1A DPWM1B DPWM3A DPWM3B GPIOA GPIOB GPIOC GPIOD PWM0 PWM1 +12V_EXT AGND AGND DGND DGND RC Filter 3A RC Filter 2B V33A V33A Analog Connection Digital Connection U33D V33A PMBus Connection JTAG Connection

Test Procedure www.ti.com

7 Test Procedure

7.1 Download Firmware Code to UCD3138A64EVM-660

Use the following steps to download the firmware code:

- 1. Set up the EVM connection based on Figure 4. The LED of the USB adapter lights.
- 2. Use provided jumper and jump across J4. The LED of the EVM lights.
- 3. Launch the UCD3xxx/UCD9xxx device GUI following the steps described in Section 6.1.3. A window shown in Figure 5 appears.
- 4. Click Firmware Download; then a new window appears as shown in Figure 6. Click Select File and browse an intended firmware code file with file extension .x0, for example, cycloneA64.x0; then click Download. The firmware of cycloneA64.x0 is downloaded to the UCD3138A64 device on the UCD3138A64CEVM-660 EVM. When prompted, click Yes to complete the download. Click Close to exit the download window.
- 5. After the firmware code downloads to the UCD3138A64 device, the intended test can be performed.

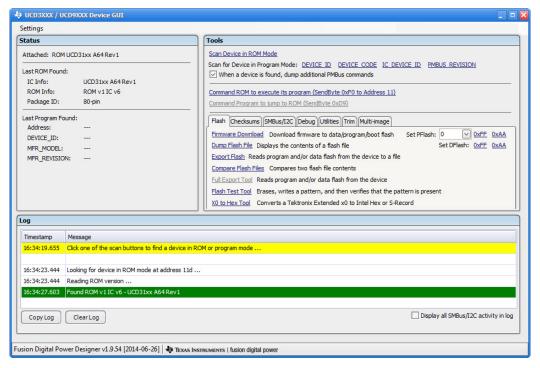


Figure 5. UCD3xxx/UCD9xxx Device GUI

www.ti.com Test Procedure

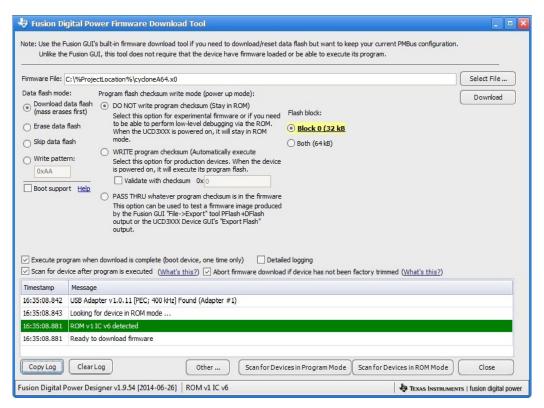


Figure 6. Firmware Code Downloading

7.2 Erase Firmware Code from UCD3138A64EVM-660

Erase the downloaded firmware from UCD3138A64 flash memory with the following steps and referencing Figure 6.

- 1. Click Device ID
- 2. Click Command Program to jump to ROM (SendByte 0xD9)
- 3. Click Erase/Set PFlash: 0xFF

7.3 Equipment Shutdown

- 1. Exit the GUI.
- 2. Disconnect the USB cable and the ribbon cable.

8 EVM Assembly Drawing and PCB layout

Figure 7 through Figure 12 show the design of the UCD3138A64CEVM-166 printed circuit board. PCB dimensions: L \times W = 3.400 in \times 1.965 in, PCB material: FR4 or compatible, four layers and 1-oz copper on each layer.

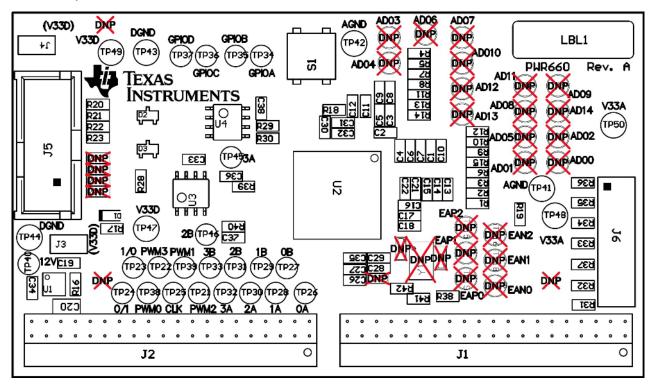


Figure 7. UCD3138A64EVM-660 Top Layer Assembly Drawing (Top View)



Figure 8. UCD3138A64EVM-660 Bottom Assembly Drawing (No Components)

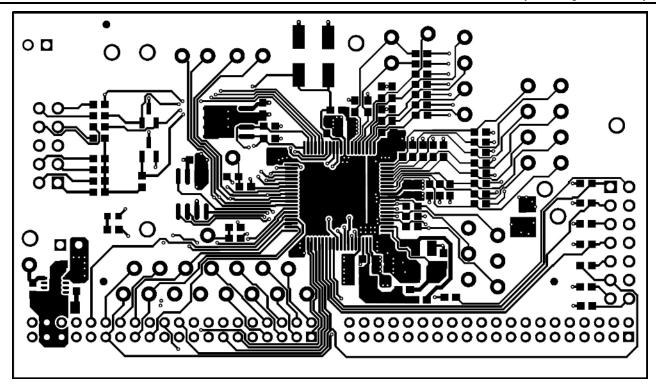


Figure 9. UCD3138A64EVM-660 Top Copper (Top View)

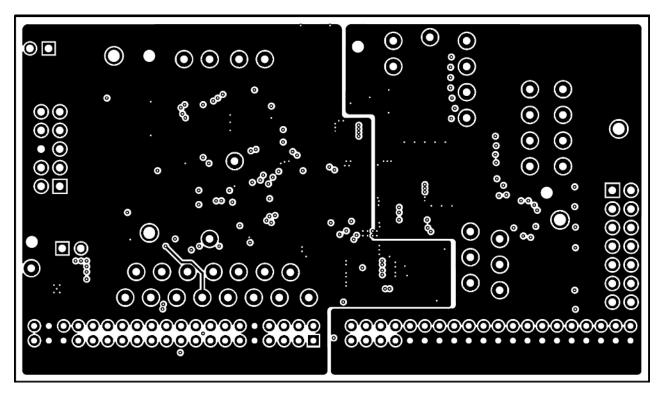


Figure 10. UCD3138A64EVM-660 Internal Layer 1 (Top View)

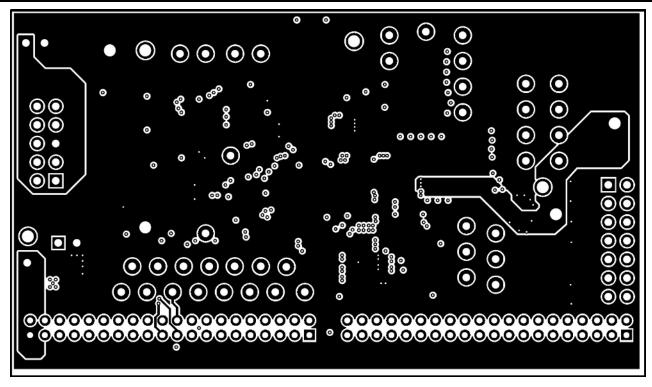


Figure 11. UCD3138A64EVM-660 Internal Layer 2 (Top View)

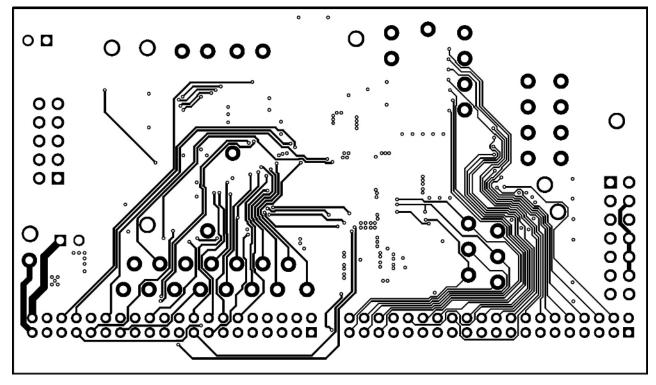


Figure 12. UCD313A64CEVM-660 Bottom Copper (Top View)

Bill of Materials www.ti.com

Bill of Materials 9

Table 4 lists the EVM components according to the schematic shown in Figure 1 and Figure 2.

Table 4. Bill of Materials⁽¹⁾

Designator	Qty.	Value	Description	Pkg. Reference	PartNumber	Manufacturer
PCB	1		Printed Circuit Board		PWR660	Any
C1-C15, C36	16	1000pF	CAP, CERM, 1000pF, 50V, ±10%, X7R, 0603	0603	GRM188R71H102KA01D	Murata
C16-C18	3	33pF	CAP, CERM, 33pF, 50V, ±5%, C0G/NP0, 0603	0603	GRM1885C1H330JA01D	Murata
C19, C30	2	0.1μF	CAP, CERM, 0.1µF, 16V, ±10%, X7R, 0603	0603	GRM188R71C104KA01D	Murata
C20	1	10μF	CAP, CERM, 10µF, 10V, ±10%, X5R, 0805	0805	GRM21BR61A106KE19L	Murata
C21, C28, C31	3	4.7μF	CAP, CERM, 4.7μF, 16V, ±10%, X5R, 0603	0603	GRM188R61C475KAAJ	Murata
C22, C27, C29, C32	4	1000pF	CAP, CERM, 1000pF, 50V, ±5%, C0G/NP0, 0603	0603	C0603C102J5GAC	Kemet
C26, C35	2	1μF	CAP, CERM, 1µF, 16V, ±10%, X7R, 0603	0603	GRM188R71C105KA12D	Murata
C33	1	0.1μF	CAP, CERM, 0.1μF, 25V, ±10%, X7R, 0603	0603	GRM188R71E104KA01D	Murata
C34	1	1μF	CAP, CERM, 1µF, 25V, ±10%, X7R, 0603	0603	GRM188R71E105KA12D	Murata
C37	1	100pF	CAP, CERM, 100pF, 50V, ±5%, C0G/NP0, 0603	0603	C0603C101J5GAC	Kemet
C38	1	0.1μF	CAP, CERM, 0.1µF, 25V, ±10%, X5R, 0603	0603	GRM188R61E104KA01D	Murata
D1	1	Green	LED, Green, SMD	1.6x0.8x0.8mm	LTST-C190GKT	Lite-On
D2, D3	2	30V	Diode, Schottky, 30V, 0.2A, SOT-23	SOT-23	BAT54A-7-F	Diodes Inc.
J1, J2	2		Receptacle, 2mm, 20x2, R/A, TH	Header, 20x2 2 mm pitch receptacle Right Angle	NPPN202FJFN-RC	Sullins Connector Solutions
J3, J4	2		Header, 100mil, 2x1, Tin plated, TH	Header, 2 PIN, 100mil, Tin	PEC02SAAN	Sullins Connector Solutions
J5	1		Header (shrouded), 100mil, 5x2, Gold, TH	5x2 Shrouded header	5103308-1	TE Connectivity
J6	1		Header, 100mil, 7x2, Tin plated, TH	Header, 7x2, 100mil, Tin	PEC07DAAN	Sullins Connector Solutions
LBL1	1		Thermal Transfer Printable Labels, 0.650" W x 0.200" H - 10,000 per roll	PCB Label 0.650"H x 0.200"W	THT-14-423-10	Brady
R1–R8, R15, R20–R22, R28	13	100	RES, 100 Ω, 1%, 0.1W, 0603	0603	CRCW0603100RFKEA	Vishay-Dale
R9-R14	6	2.00k	RES, 2.00kΩ, 1%, 0.1W, 0603	0603	CRCW06032K00FKEA	Vishay-Dale
R16	1	0.5	RES, 0.5 Ω, 1%, 0.1W, 0603	0603	RL0603FR-070R5L	Yageo America
R17	1	301	RES, 301 Ω, 1%, 0.1W, 0603	0603	CRCW0603301RFKEA	Vishay-Dale
R18	1	1.65k	RES, 1.65kΩ, 1%, 0.1W, 0603	0603	CRCW06031K65FKEA	Vishay-Dale
R19, R23, R34, R37	4	0	RES, 0 Ω, 5%, 0.1W, 0603	0603	CRCW06030000Z0EA	Vishay-Dale
R29, R30	2	2.0k	RES, 2.0kΩ, 5%, 0.1W, 0603	0603	RC0603JR-072KL	Yageo America
R31-R33, R35, R36, R38	6	10.0k	RES, 10.0kΩ, 1%, 0.1W, 0603	0603	CRCW060310K0FKEA	Vishay-Dale
R39	1	16.0k	RES, 16.0kΩ, 1%, 0.1W, 0603	0603	RC0603FR-0716KL	Yageo America
R40	1	10.0k	RES, 10.0kΩ, 1%, 0.1W, 0603	0603	RC0603FR-0710KL	Yageo America
R41, R42	2	1.0k	RES, 1.0kΩ, 5%, 0.1W, 0603	0603	CRCW06031K00JNEA	Vishay-Dale
S1	1		Switch, Tactile, SPST-NO, 1VA, 32V, SMT	Switch, 6.3x5.36x6.6 mm, SMT	KT11P2JM34LFS	C&K Components

⁽¹⁾ Unless otherwise noted, all parts may be substituted with equivalents.

Bill of Materials www.ti.com

Table 4. Bill of Materials⁽¹⁾ (continued)

Designator	Qty.	Value	Description	Pkg. Reference	PartNumber	Manufacturer
SH-J1	1	1x2	Shunt, 100mil, Flash Gold, Black	Closed Top 100mil Shunt	SPC02SYAN	Sullins Connector Solutions
TP21-TP40, TP45, TP46	22	White	Test Point, Miniature, White, TH	White Miniature Testpoint	5002	Keystone
TP41, TP42	2	Grey	Test Point, Multipurpose, Grey, TH	Grey Multipurpose Testpoint	5128	Keystone
TP43, TP44	2	Black	Test Point, Multipurpose, Black, TH	Black Multipurpose Testpoint	5011	Keystone
TP47, TP49	2	Red	Test Point, Multipurpose, Red, TH	Red Multipurpose Testpoint	5010	Keystone
TP48, TP50	2	Orange	Test Point, Multipurpose, Orange, TH	Orange Multipurpose Testpoint	5013	Keystone
U1	1		HIGH INPUT VOLTAGE, MICROPOWER SON PACKAGED, 80mA, LDO LINEAR REGULATORS, DRB0008A	DRB0008A	TPS715A33DRB	Texas Instruments
U2	1		UCD3138A64PFC, PFC0080	PFC0080A	UCD3138A64PFC	Texas Instruments
U3	1		2-Mbit DataFlash (with Extra 64-Kbits), 1.65V Minimum SPI Serial Flash Memory, SOIC-8	SOIC-8	AT45DB021E-SSHN-B	Adesto Technologies
U4	1		IC, EEPROM, 2MBIT, 1MHz, 8SOIC	SOIC-8	M24M02-DRMN6TP	STMicroelectronics
C23, C24	0	10pF	CAP, CERM, 10pF, 50V, ±5%, C0G/NP0, 0603	0603	C0603C100J5GACTU	Kemet
C25	0	2.2µF	CAP, CERM, 2.2μF, 10V, ±10%, X7R, 0603	0603	GRM188R71A225KE15D	Murata
FID1, FID2, FID3	0		Fiducial mark. There is nothing to buy or mount.	Fiducial	N/A	N/A
R24-R27	0	0	RES, 0 ohm, 5%, 0.1W, 0603	0603	CRCW06030000Z0EA	Vishay-Dale
TP1-TP20, TP51	0	White	Test Point, Miniature, White, TH	White Miniature Testpoint	5002	Keystone
Y1	0		Crystal, 10.000MHz, 10pF, SMD	5x0.9x3.2mm	7B-10.000MEEQ-T	TXC Corporation

Composer Studio v5.5

Appendix A Summary of Using Code

In this appendix, the basic steps of using Code Composer Studio v5.5 to compile firmware for the UCD3138 family of devices is described. A design flow is described but detailed steps for firmware code creation, and firmware and hardware debugging are beyond the scope of this user's guide.

A.1 Importing a CCSv5 Project

Upon running CCSv5.5 for the first time, the **Workspace Launcher** window appears as shown in Figure 13. The user decides whether or not to use a workspace, where it is located, or to check the box that says **Use this as the default and do not ask again**. For this guide, a workspace is not used, so click **OK**.

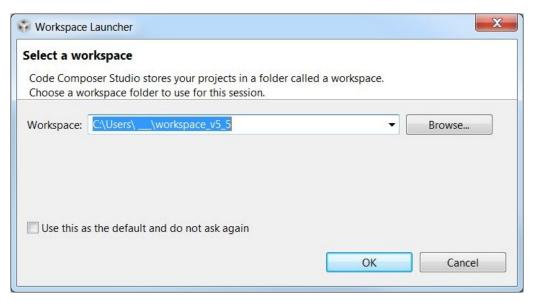


Figure 13. CCSv5.5 Workspace Launcher

When the main window opens, click **Project** in the top navigation menu, then choose **Import Existing CCS Eclipse Project** as shown in Figure 14.

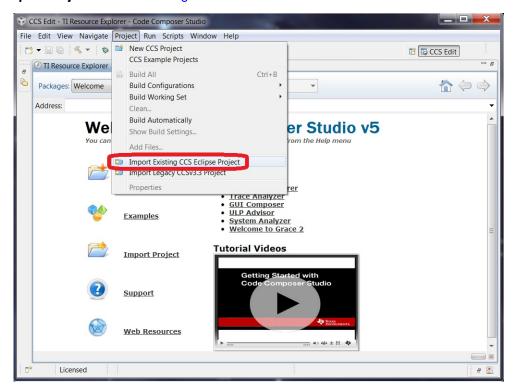


Figure 14. Import Existing CCS Eclipse Project

This opens the window shown in Figure 15. Under Select search-directory, click Browse, navigate to the target project, and click OK. For this example, the project is called Training_CCSv5.5 and is located in a folder called Training_CCS5v5. Check the box next to the discovered project, and do not check Copy projects into workspace, or Automatically import referenced projects. Click Finish.

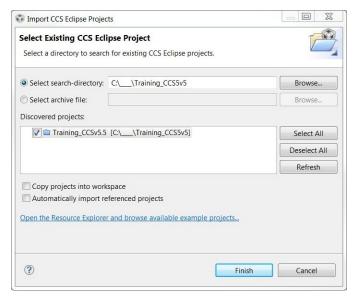


Figure 15. Importing a CCSv5.5 Project

The project should be imported into CCSv5.5 and shown in the **Project Explorer** as shown in Figure 16. At this point, files in the project can be edited as required.

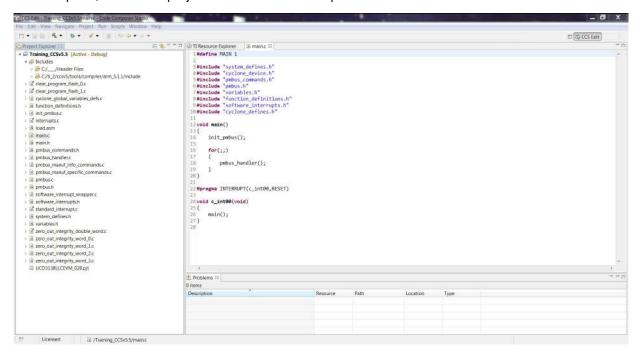


Figure 16. Project Explorer

A.2 Build/Compile a Project Using Code Composer Studio v5.5

For the UCD3138 family of devices, compiling a project produces an Intel-hex (.x0) firmware file that can be downloaded to, and run on the UCD3138 or related target device using the UCD3XXX / UCD9XXX Device GUI (part of the Fusion Design Online software from TI).

After editing the project files, Right-Click on the project in the Project explorer, and choose **Build Project**.

NOTE: If this is the first time building a UCD3138 or related project, and Cygwin is also installed on the PC that is performing the compilation, the instructions in Section 3.3 of the Application Note Converting UCD3138 Firmware Project from Code Composer Studio Version 3.3 to 5.2 (SLUA679) must be followed. Mainly, the C:\CYGWIN or other similarly named directory must be renamed temporarily during this first build. This allows the new ARM library to be built properly. After this first build, the CYGWIN directory can be rolled back to its original name, and future builds can compile successfully.

Builds may take up to a minute or longer to compile for a first time build. Figure 17 shows the state of a successful build:

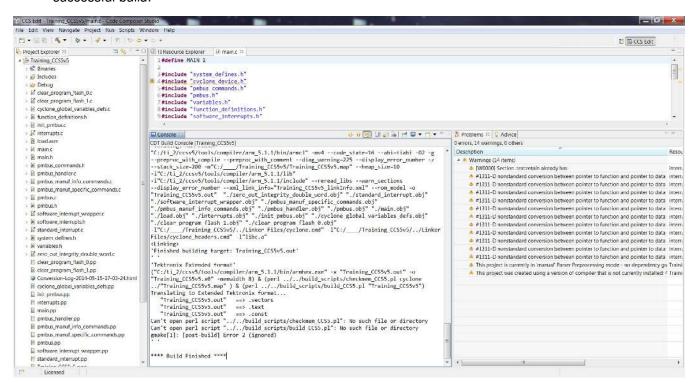


Figure 17. Successful Build of UCD3138-Related Source Code

When the build has finished, the .x0 file is created and is placed in the project directory's debug folder. The filename that prefaces the .x0 is the name of the project that was built (that is, a project named Training CCS5v5 creates Training CCS5v5.x0 as its firmware file). However, it must be noted that the project name must have no spaces, otherwise the .x0 file is not generated.

This .x0 file can be run on the UCD3138 target device using the UCD3XXX / UCD9XXX Device GUI.

www.ti.com References

A.3 References

- 1. UCD3138A64 Data Manual (SLUSBZ8)
- 2. UCD3138 Monitoring and Communications Programmer's Manual (SLUU996)
- 3. UCD3138 Digital Power Peripherals Programmer's Manual (SLUU995)
- 4. UCD3138 ARM and Digital System Programmer's Manual (SLUU994)
- 5. Fusion Digital Power Designer GUI for Isolated Power Applications User Guide (for UCD3138, UCD3138064, UCD3138A64 applications) (SLUA676)
- 6. *Code Composer Studio v5 Wiki*, Texas Instruments, http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v5
- 7. Converting UCD3138 Firmware Project from Code Composer Studio Version 3.3 to 5.2 (SLUA679)
- 8. UCD3138A64 Programmer's Manual (SLUUB54)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products	Applications
Products	Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>