ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

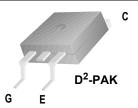
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

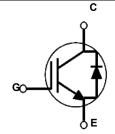
ON Semiconductor®

FGB20N60SFD-F085 600V, 20A Field Stop IGBT

Features

- · High current capability
- Low saturation voltage: V_{CE(sat)} = 2.2V @ I_C = 20A
- · High input impedance
- · Fast switching
- · Qualified to Automotive Requirements of AEC-Q101
- · RoHS complaint


Applications


- Inverters, SMPS, PFC, UPS
- Automotive Chargers, Converters, High Voltage Auxiliaries

Using novel field-stop IGBT technology, ON Semiconductor's new series of field-stop IGBTs offers the optimum performance for automotive chargers, inverters, and other applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

Symbol	Description		Ratings	Units	
V _{CES}	Collector to Emitter Voltage		600	V	
V _{GES}	Gate to Emitter Voltage		± 20	V	
I _C	Collector Current	@ T _C = 25°C	40	Α	
	Collector Current	@ T _C = 100°C	20	Α	
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25°C	60	Α	
I _F	Diode Forward Current	@ T _C = 25°C	20	Α	
	Diode Forward Current	@ T _C = 100°C	10	Α	
I _{FM(1)}	Pulsed Diode Maximum Forward Current		60	Α	
P_{D}	Maximum Power Dissipation	@ T _C = 25°C	208	W	
. ט	Maximum Power Dissipation	@ T _C = 100°C	83	W	
T _J	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
T _L	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Thermal Characteristics

Symbol	Parameter	Ratings	Units	
$R_{\theta JC}(IGBT)_{(2)}$	Thermal Resistance, Junction to Case	0.6	°C/W	
$R_{\theta JC}(\text{Diode})$	Thermal Resistance, Junction to Case	2.6	°C/W	

Symbol	Parameter	Тур.	Units	
$R_{ heta JA}$	Thermal Resistance, Junction to Ambient (PCB Mount)(2)	75	°C/W	

Package Marking and Ordering Information

			Packaging		Max Qty	
Device Marking	Device	Package	Type	Qty per Tube	per Box	
FGB20N60SFD	FGB20N60SFD-F085	TO-263	Tube	50ea	-	

Electrical Characteristics of the IGBT $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Charac	teristics					
BV _{CES}	Collector to Emitter Breakdown Voltage	V _{GE} = 0V, I _C = 250μA	600	-	-	V
$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	Temperature Coefficient of Breakdown Voltage	V _{GE} = 0V, I _C = 250μA	-	0.79	-	V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$	-	-	250	
		ICES at 80%*BVCES, 150°C	-	-	250	μΑ
I _{GES}	G-E Leakage Current	V _{GE} = V _{GES} , V _{CE} = 0V	-	-	±400	nA
On Charac	teristics					
V _{GE(th)}	G-E Threshold Voltage	$I_{C} = 250 \mu A, V_{CE} = V_{GE}$	4.0	4.8	6.5	V
- (-)		I _C = 20A, V _{GE} = 15V	-	2.2	2.85	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	I _C = 20A, V _{GE} = 15V, T _C = 125°C	-	2.4	-	V
Dvnamic C	haracteristics				1	
C _{ies}	Input Capacitance		-	940	1250	pF
C _{oes}	Output Capacitance	$V_{CE} = 30V, V_{GE} = 0V,$	-	110	146	pF
C _{res}	Reverse Transfer Capacitance	f = 1MHz	-	40	53	pF
Switching	Characteristics			1		ı
t _{d(on)}	Turn-On Delay Time		_	10	13	ns
t _r	Rise Time		_	16	21	ns
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 400V, I _C = 20A,	_	90	120	ns
t _f	Fall Time	$R_G = 10\Omega$, $V_{GE} = 15V$,	-	24	36	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C	-	0.31	0.41	mJ
E _{off}	Turn-Off Switching Loss		-	0.13	0.21	mJ
E _{ts}	Total Switching Loss		-	0.44	0.59	mJ
t _{d(on)}	Turn-On Delay Time		-	12	16	ns
t _r	Rise Time		-	16	21	ns
t _{d(off)}	Turn-Off Delay Time	V _{CC} = 400V, I _C = 20A,	-	95	126	ns
t _f	Fall Time	$R_G = 10\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 125^{\circ}C$	-	28	43	ns
E _{on}	Turn-On Switching Loss		-	0.45	0.60	mJ
E _{off}	Turn-Off Switching Loss		-	0.21	0.38	mJ
E _{ts}	Total Switching Loss		-	0.66	0.88	mJ
Qg	Total Gate Charge		-	63	95	nC
Q _{ge}	Gate to Emitter Charge	$V_{CE} = 400V, I_{C} = 20A,$	-	7	11	nC
Q _{gc}	Gate to Collector Charge	V _{GE} = 15V	-	32	48	nC

Electrical Characteristics of the Diode T_C = 25°C unless otherwise noted

Symbol	Parameter	Test Conditions		Min.	Тур.	Max	Units
V _{FM}	Diode Forward Voltage	I _F = 10A	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	1.9	2.5	V
			T _C = 125°C	-	1.7	-	
t	Diode Reverse Recovery Time	 	$T_C = 25^{\circ}C$	-	111	-	ns
^t rr			T _C = 125°C	-	204	-	
Q _{rr}	Diode Reverse Recovery Charge		$T_C = 25^{\circ}C$	-	174	244	nC
			$T_{\rm C}$ = 125 $^{\rm o}$ C	-	463		

Notes:

Rthja for D2-PAK: according to JESD51-2, test method environmental condition and JESD51-3, low effective thermal conductivity test board for leaded surface mount package. thermal measurements. JESD51-2: Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air).

^{1:} Repetitive rating: Pulse width limited by max. junction temperature

^{2:}Rthjc for D2-PAK: according to Mil standard 883-1012 test method.

Figure 1. Typical Output Characteristics

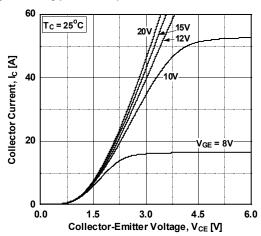


Figure 3. Typical Saturation Voltage Characteristics

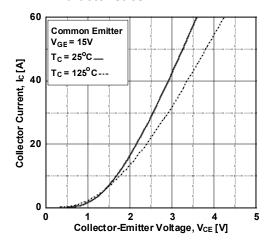


Figure 5. Saturation Voltage vs. Case
Temperature at Variant Current Level

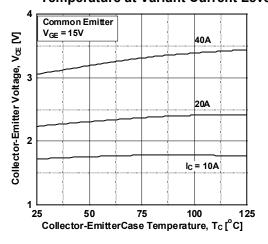


Figure 2. Typical Output Characteristics

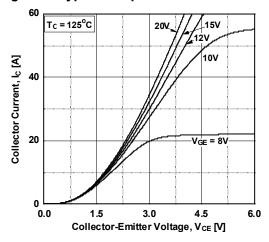


Figure 4. Transfer Characteristics

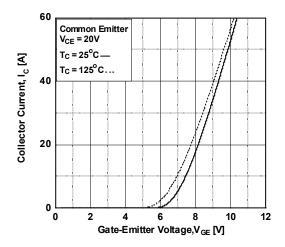


Figure 6. Saturation Voltage vs. V_{GE}

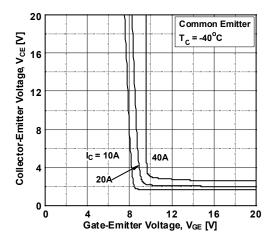


Figure 7. Saturation Voltage vs. V_{GE}

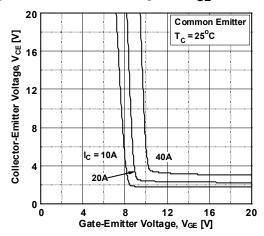


Figure 9. Capacitance Characteristics

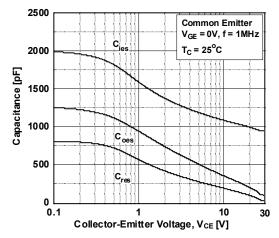


Figure 11. SOA Characteristics

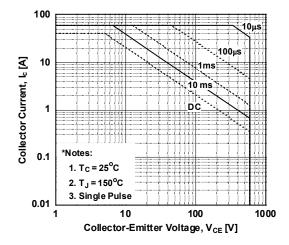


Figure 8. Saturation Voltage vs. V_{GE}

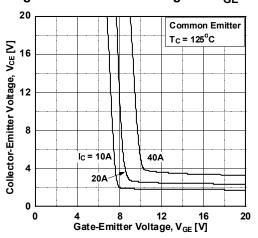


Figure 10. Gate charge Characteristics

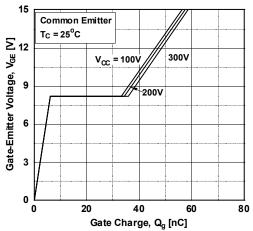


Figure 12. Turn-on Characteristics vs. Gate Resistance

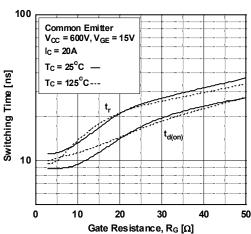


Figure 13. Turn-off Characteristics vs.
Gate Resistance

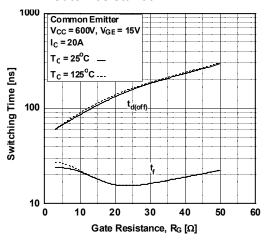


Figure 15. Turn-off Characteristics vs. Collector Current

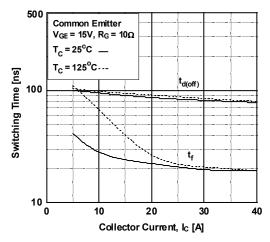


Figure 17. Switching Loss vs. Collector Current

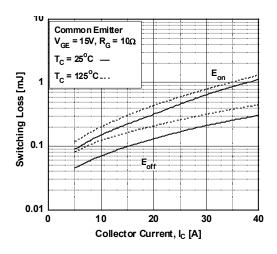


Figure 14. Turn-on Characteristics vs. Collector Current

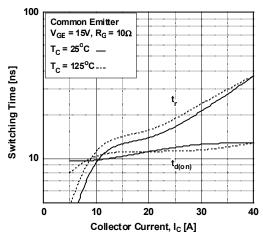


Figure 16. Switching Loss vs. Gate Resistance

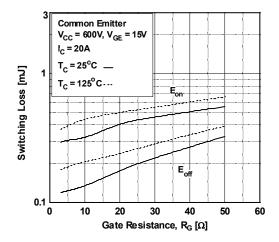


Figure 18. Turn off Switching SOA Characteristics

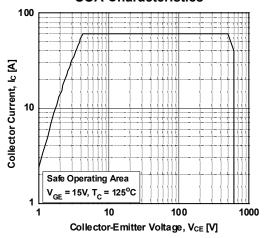


Figure 19. Forward Characteristics

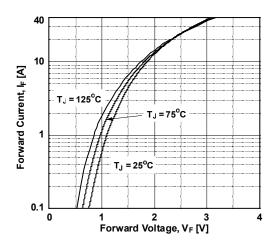


Figure 20. Typical Reverse Current vs. Reverse Voltage

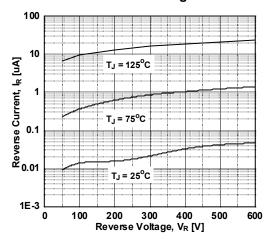


Figure 21. Stored Charge

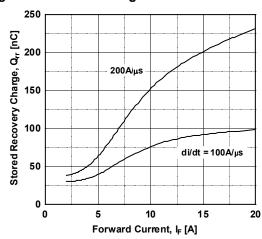
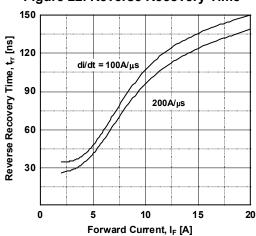
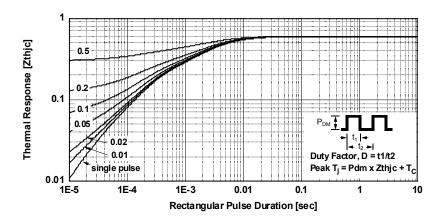
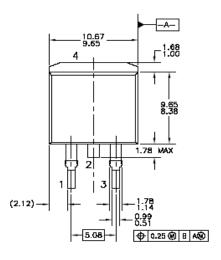
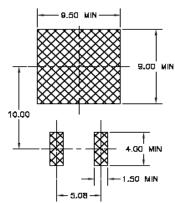
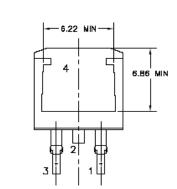
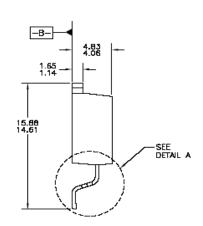


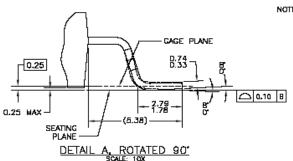
Figure 22. Reverse Recovery Time


Figure 23. Transient Thermal Impedance of IGBT


Mechanical Dimensions


D²PAK



LAND PATTERN RECOMMENDATION

- NOTES: UNLESS OTHERWISE SPECIFIED

 A) ALL DIMENSIONS ARE IN MILLIMETERS.

 B) REFERENCE JEDEC, TO—263, ISSUE D,
 VARIATION AB, DATED JULY 2003.

 C) DIMENSIONING AND TOLERANCING PER
 ANSI Y14.5M 1982.

 D) LOCATION OF THE PIN HOLE MAY VARY
 (LOWER LEFT CORNER, LOWER CENTER
 AND CENTER OF THE PACKAGE).

 B E) PRESENCE OF TRIMMED CENTER LEAD
 IS OPTIONAL

TO283AD2REVD

Dimensions in Millimeters

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and h

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Phone: 421 33 790 2910

Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative