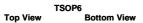
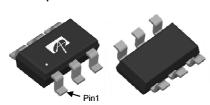
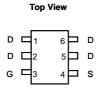
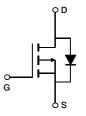


AO6401 30V P-Channel MOSFET


General Description


The AO6401 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications.


Product Summary


 $\begin{array}{lll} V_{DS} & -30V \\ I_{D} \; (at \; V_{GS} \!\!=\! \!\! -10V) & -5A \\ R_{DS(ON)} \; (at \; V_{GS} \!\!=\! \!\! -10V) & < 47m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \!\!=\! \!\! -4.5V) & < 64m\Omega \\ R_{DS(ON)} \; (at \; V_{GS} \!\!=\! \!\!\! -2.5V) & < 85m\Omega \end{array}$

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

A sociate maximum ratings T _A -20 o amost other motor							
Parameter		Symbol	Maximum	Units			
Drain-Source Voltage		V _{DS}	-30	V			
Gate-Source Voltage		V _{GS}	±12	V			
Continuous Drain	T _A =25℃		-5				
Current	T _A =70℃	ID	-4	A			
Pulsed Drain Current	Ċ	I _{DM}	-28				
	T _A =25℃	P _D	2	W			
Power Dissipation ^B	T _A =70℃	T _D	1.3	VV			
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	C			

Thermal Characteristics							
Parameter		Symbol	Тур	Max	Units		
Maximum Junction-to-Ambient ^A	t ≤ 10s	D	47.5	62.5	C/W		
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	74	110	℃/W		
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	37	50	C/W		

Electrical Characteristics (T_J=25℃ unless otherwise noted)

STATIC PARAMETERS BV _{DSS}	Symbol	Parameter	Conditions		Min	Тур	Max	Units
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STATIC P	ARAMETERS						
$ \begin{array}{ c c c c } \hline l_{DSS} & Zero \ Gate \ Voltage \ Drain \ Current \\ \hline l_{GSS} & Gate-Body \ leakage \ current \\ \hline V_{DS}=0V, V_{GS}=\pm 12V \\ \hline V_{GS(th)} & Gate \ Threshold \ Voltage \\ \hline V_{DS}=V_{GS} \ l_{D}=-250\mu A \\ \hline V_{DS}=V_{DS} \ l_{D}=-250\mu A \\ \hline V_{DS}=-10V, V_{DS}=-5V \\ \hline V_{DS}=-10V, V_{DS}$	BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$		-30			V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Zoro Gato Voltago Prain Current	V_{DS} =-30V, V_{GS} =0V				-1	μА
$ \begin{array}{c} V_{\text{CS(th)}} & \text{Gate Threshold Voltage} & V_{\text{DS}} = V_{\text{CS}} \ I_{\text{D}} = 250 \mu \text{A} & -0.5 & -0.9 & -1.3 \\ \hline I_{\text{D(ON)}} & \text{On state drain current} & V_{\text{GS}} = -10 \text{V}, \ V_{\text{DS}} = -5 \text{V} & -28 \\ \hline \\ V_{\text{CS}} = -10 \text{V}, \ I_{\text{D}} = -5 \text{A} & 39 & 47 \\ \hline V_{\text{CS}} = -10 \text{V}, \ I_{\text{D}} = -5 \text{A} & 39 & 47 \\ \hline V_{\text{CS}} = -4.5 \text{V}, \ I_{\text{D}} = -5 \text{A} & 45 & 64 \\ \hline V_{\text{CS}} = -2.5 \text{V}, \ I_{\text{D}} = -4 \text{A} & 45 & 64 \\ \hline V_{\text{CS}} = -2.5 \text{V}, \ I_{\text{D}} = -4 \text{A} & 45 & 64 \\ \hline V_{\text{CS}} = -2.5 \text{V}, \ I_{\text{D}} = -1 \text{A} & 59 & 85 \\ \hline S_{\text{CS}} & \text{Diode Forward Voltage} & I_{\text{S}} = -14 \text{N}, V_{\text{CS}} = 0 \text{V} & -0.7 & -1 \\ \hline I_{\text{S}} & \text{Maximum Body-Diode Continuous Current} & -2.5 \\ \hline \hline \textbf{DYNAMIC PARAMETERS} & & 645 & 780 \\ \hline \textbf{C}_{\text{CSS}} & \text{Input Capacitance} & & 645 & 780 \\ \hline \textbf{C}_{\text{CSS}} & \text{Output Capacitance} & & 645 & 780 \\ \hline \textbf{C}_{\text{CSS}} & \text{Reverse Transfer Capacitance} & & 645 & 780 \\ \hline \textbf{R}_{\text{g}} & \text{Gate resistance} & & V_{\text{CS}} = 0 \text{V}, \ V_{\text{DS}} = -15 \text{V}, \ f = 1 \text{MHz} & 4 & 7.8 & 12 \\ \hline \textbf{SWITCHING PARAMETERS} & & & & & & & & & & & & & & & & & & &$	'DSS	Zelo Gale Vollage Diam Current		T _J =55℃			-5	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} =±12V				±100	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=-250$ μA		-0.5	-0.9	-1.3	V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		On state drain current	V_{GS} =-10V, V_{DS} =-5V		-28			Α
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V_{GS} =-10V, I_D =-5A			39	47	mΩ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P	Static Drain Source On Registance		T _J =125℃		60	74	11122
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	' DS(ON)	Static Dialii-Source Off-Resistance	V_{GS} =-4.5V, I_D =-4A			45	64	mΩ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			V_{GS} =-2.5V, I_D =-1A			59	85	mΩ
$ \begin{array}{ c c c c } \hline \textbf{I}_S & \textbf{Maximum Body-Diode Continuous Current} & & -2.5 \\ \hline \textbf{DYNAMIC PARAMETERS} \\ \hline \textbf{C}_{iss} & \textbf{Input Capacitance} & & 645 & 780 \\ \hline \textbf{C}_{oss} & \textbf{Output Capacitance} & & 645 & 780 \\ \hline \textbf{C}_{rss} & \textbf{Reverse Transfer Capacitance} & & 55 & 80 \\ \hline \textbf{R}_g & \textbf{Gate resistance} & \textbf{V}_{GS}=0\textbf{V}, \textbf{V}_{DS}=-15\textbf{V}, \textbf{f}=1\textbf{MHz} & 4 & 7.8 & 12 \\ \hline \textbf{SWITCHING PARAMETERS} \\ \hline \textbf{Q}_g(10\textbf{V}) & \textbf{Total Gate Charge} & & 14 & 17 \\ \hline \textbf{Q}_g(4.5\textbf{V}) & \textbf{Total Gate Charge} & & & 1.5 \\ \hline \textbf{Q}_{gs} & \textbf{Gate Source Charge} & & & 1.5 \\ \hline \textbf{Q}_{gd} & \textbf{Gate Drain Charge} & & & 2.5 \\ \hline \textbf{t}_{D(on)} & \textbf{Turn-On DelayTime} & & & 6.5 \\ \hline \textbf{t}_r & \textbf{Turn-On Rise Time} & & \textbf{V}_{GS}=-10\textbf{V}, \textbf{V}_{DS}=-15\textbf{V}, \textbf{R}_L=3\Omega, & 3.5 \\ \hline \end{array}$	g _{FS}	Forward Transconductance	V_{DS} =-5V, I_{D} =-5A			18		S
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V			-0.7	-1	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _S	Maximum Body-Diode Continuous Curre	ent				-2.5	Α
$\begin{array}{ c c c c c c }\hline C_{oss} & Output Capacitance & V_{GS}=0V, V_{DS}=-15V, f=1MHz & 80 \\ \hline C_{rss} & Reverse Transfer Capacitance & 55 & 80 \\ \hline R_g & Gate resistance & V_{GS}=0V, V_{DS}=0V, f=1MHz & 4 & 7.8 & 12 \\ \hline \textbf{SWITCHING PARAMETERS} & & & & & & & & & & & & & & & & & & &$	DYNAMIC	PARAMETERS						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{iss}	Input Capacitance				645	780	pF
$\begin{array}{ c c c c c c c }\hline R_g & Gate \ resistance & V_{GS}=0V, \ V_{DS}=0V, \ f=1MHz & 4 & 7.8 & 12 \\ \hline \textbf{SWITCHING PARAMETERS} \\ \hline Q_g(10V) & Total \ Gate \ Charge & & 14 & 17 \\ \hline Q_g(4.5V) & Total \ Gate \ Charge & & 7 & 8.5 \\ \hline Q_{gs} & Gate \ Source \ Charge & & 1.5 & \\ \hline Q_{gd} & Gate \ Drain \ Charge & & 2.5 & \\ \hline t_r & Turn-On \ Rise \ Time & V_{GS}=-10V, \ V_{DS}=-15V, \ R_L=3\Omega, & 3.5 & \\ \hline \end{array}$	C _{oss}	Output Capacitance	V _{GS} =0V, V _{DS} =-15V, f:	=1MHz		80		pF
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C _{rss}	Reverse Transfer Capacitance				55	80	pF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1	MHz	4	7.8	12	Ω
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SWITCHIN	NG PARAMETERS						
$\begin{array}{ c c c c c c c c c }\hline Q_{gs} & Gate Source Charge & V_{GS}=-10V, V_{DS}=-15V, I_D=-5A & 1.5 & \\ \hline Q_{gd} & Gate Drain Charge & 2.5 & \\ \hline t_{D(on)} & Turn-On DelayTime & 6.5 & \\ \hline t_r & Turn-On Rise Time & V_{GS}=-10V, V_{DS}=-15V, R_L=3\Omega, & 3.5 & \\ \hline \end{array}$	Q _g (10V)	Total Gate Charge				14	17	nC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Q _g (4.5V)	Total Gate Charge	\/	l5Λ		7	8.5	nC
$ \begin{array}{c cccc} t_{D(on)} & Turn\mbox{-}On \ DelayTime & & 6.5 \\ t_r & Turn\mbox{-}On \ Rise \ Time & V_{GS}\mbox{=-}10\mbox{V}, \ V_{DS}\mbox{=-}15\mbox{V}, \ R_L\mbox{=}3\Omega, & 3.5 \\ \end{array} $	Q_{gs}	Gate Source Charge	V _{GS} 10V, V _{DS} 13V	, I _D 5A		1.5		nC
t_r Turn-On Rise Time V_{GS} =-10V, V_{DS} =-15V, R_L =3 Ω , 3.5	Q_{gd}	Gate Drain Charge				2.5		nC
	t _{D(on)}	Turn-On DelayTime				6.5		ns
$R_{\text{CIN}} = 3\Omega$	t _r	Turn-On Rise Time	V _{GS} =-10V, V _{DS} =-15V,	, R _L =3Ω,		3.5		ns
(D(OII) 1411 3	t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$			41		ns
t _f Turn-Off Fall Time 9		Turn-Off Fall Time				9		ns
t_{rr} Body Diode Reverse Recovery Time I_F =-5A, dI/dt =100A/ μ s 11 13.5	t _{rr}	Body Diode Reverse Recovery Time	I _F =-5A, dI/dt=100A/μs	S		11	13.5	ns
Q _{rr} Body Diode Reverse Recovery Charge I _F =-5A, dI/dt=100A/μs 3.5	Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-5A, dI/dt=100A/μs	S		3.5		nC

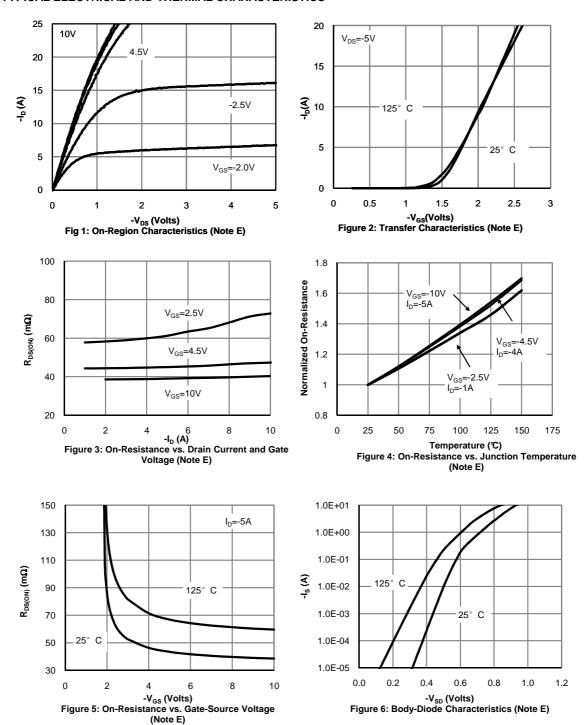
A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design.

B. The power dissipation P_D is based on P_D is based on the user's specific board design.

C. Repetitive rating, pulse width limited by junction temperature P_D is based on low frequency and duty cycles to keep

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

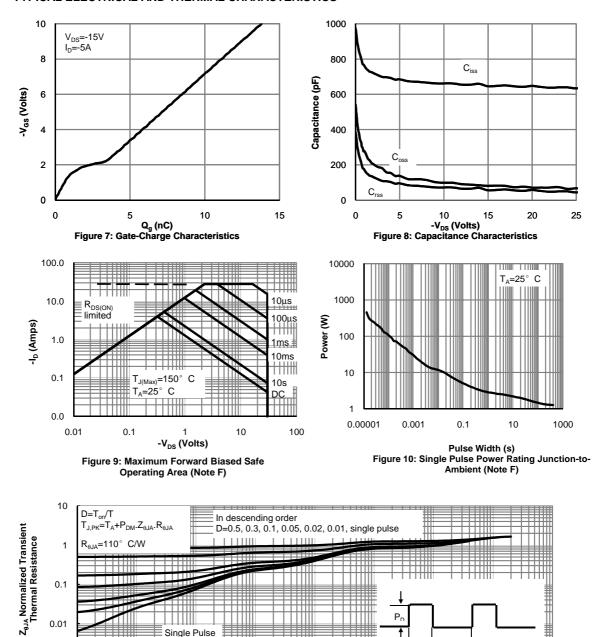
initial $T_J = 25^{\circ}$ C.


D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in^2 FR-4 board with 2oz. Copper, assuming a maximum junction temperature of $T_{J(MAX)}=150^\circ$ C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS



0.01

0.001 0.00001

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Pulse Width (s) Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

0.1

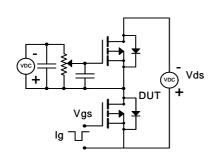
0.01

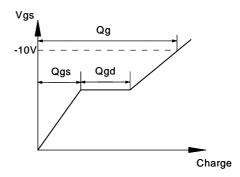
Single Pulse

0.001

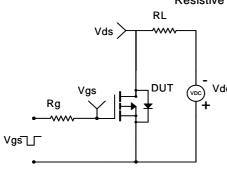
0.0001

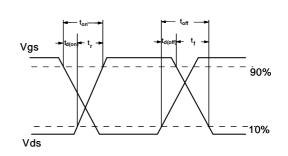
Pn

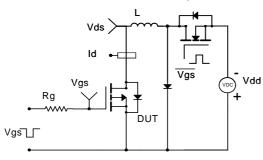

10

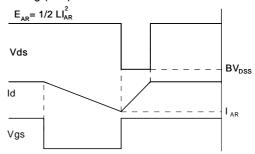

100

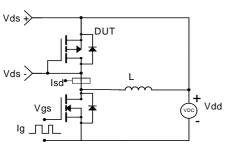
1000

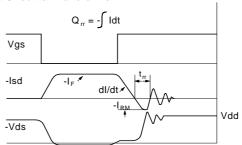



Gate Charge Test Circuit & Waveform

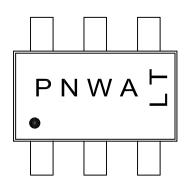



Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms



Document No.	PD-00119			
Version	Е			
Title	AO6401 Marking Description			

TSOP-6 PACKAGE MARKING DESCRIPTION

Green product

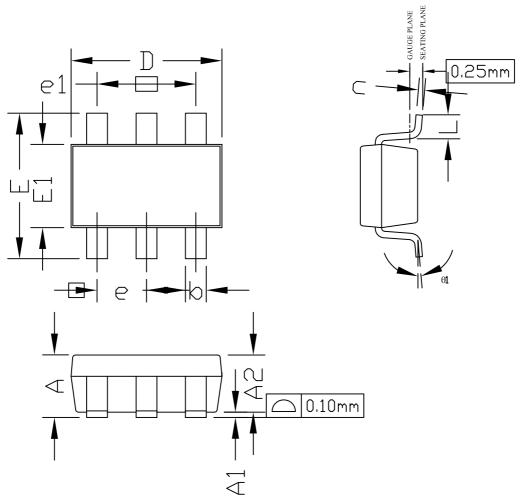
NOTE:

P - Package and product type

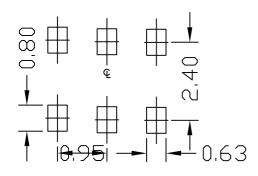
N - Last digital of product number

W - Year and week code

A - Assembly location code


L&T - Assembly lot code

PART NO.	DESCRIPTION	CODE (PN)
AO6401	Green product	D1
AO6401L	Green product	D1



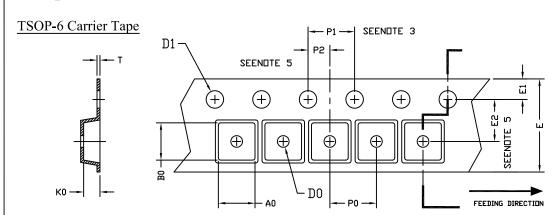
Document No.	PO-00002
Version	rev H

TSOP6 PACKAGE OUTLINE

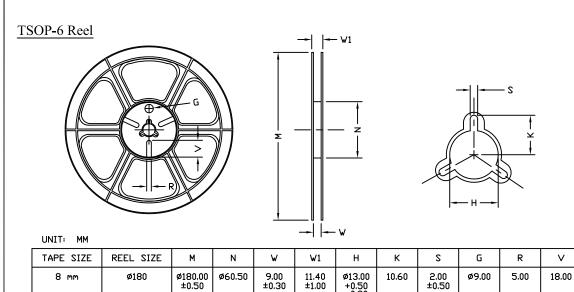
RECOMMENDED LAND PATTERN

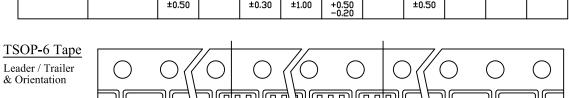
UNIT:	mm

SYMBOLS	DIMENS	IONS IN MILLI	METERS	DIMENSIONS IN INCHES			
STMBULS	MIN	NOM	MAX	MIN	NOM	MAX	
A	0.80		1.25	0.031		0.049	
A1	0.00		0.15	0.000		0.006	
A2	0.70	1.10	1.20	0.028	0.043	0.047	
b	0.30	0.40	0.50	0.012	0.016	0.020	
С	0.08	0.13	0.20	0.003	0.005	0.008	
D	2.70	2.90	3.10	0.106	0.114	0.122	
Е	2.50	2.80	3.10	0.098	0.110	0.122	
E1	1.50	1.60	1.70	0.059	0.063	0.067	
e	0.95 BSC.			0.037BSC.			
e1	1.90 BSC.			0.075 BSC.			
L	0.30		0.60	0.012		0.024	
θ1	0°		8°	0°		8°	


NOTE

- 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH AND GATE BURRS. MOLD FLASH AT THE NON-LEAD SIDES SHOULD BE LESS THAN 5 MILS EACH.
- 2. DIMENSION "L" IS MEASURED IN GAUGE PLANE.
- 3. TOLERANCE ± 0.100 mm(4 mil) UNLESS OTHERWISE SPECIFIED.
- 4. FOLLOWED FROM JEDEC MO-178C & MO-193C.
- 5. CONTROLLING DIMENSIONS IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT.


TSOP-6 Tape and Reel Data


LEADER TAPE

UNIT: MM

PACK	4GE	A0	В0	К0	D0	D1	E	E1	E2	P0	P1	P2	Т
SDT-	23	3.15	3.27	1.34	1.10	1.50	8.00	1.75	3.50	4.00	4.00	2.00	0.25
	m)	±0.10	±0.10	±0.10	±0.01	+0.10	±0.20	±0.10	±0.05	±0.10	±0.10	±0.10	±0.05

Unit Per Reel: 3000pcs

> TRAILER TAPE COMPONENTS TAPE 300 mm MIN. □R DRIENTATION IN POCKET 500 mm MIN. OR 125 EMPTY POCKETS 75 EMPTY POCKETS

AOS Semiconductor Product Reliability Report

AO6401/AO6401L, rev B

Plastic Encapsulated Device

ALPHA & OMEGA Semiconductor, Inc

495 Mercury Drive Sunnyvale, CA 94085 U.S.

Tel: (408) 830-9742 <u>www.aosmd.com</u>

Aug 4, 2006

This AOS product reliability report summarizes the qualification result for AO6401. Accelerated environmental tests are performed on a specific sample size, and then followed by electrical test at end point. Review of final electrical test result confirms that AO6401 passes AOS quality and reliability requirements. The released product will be categorized by the process family and be monitored on a quarterly basis for continuously improving the product quality.

Table of Contents:

- I. Product Description
- II. Package and Die information
- III. Environmental Stress Test Summary and Result
- IV. Reliability Evaluation
- V. Quality Assurance Information

I. Product Description:

The AO6401 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications. Standard Product AO6401 is Pb-free (meets ROHS & Sony 259 specifications). AO6401L is a Green Product ordering option. AO6401 and AO6401L are electrically identical.

Absolute Maximum Ratings T _A =25°C unless otherwise noted						
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V _{DS}	-30	V		
Gate-Source Voltage		V_{GS}	±12	V		
Continuous Drain	T _A =25°C		-5			
Current	T _A =70°C	I _D	-4.2	Α		
Pulsed Drain Current		I _{DM}	-30			
	T _A =25°C	P _D	2	W		
Power Dissipation	T _A =70°C	L D	1.44	VV		
Junction and Storage Temperature						
Range		T_{J}, T_{STG}	-55 to 150	°C		

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to- Ambient	T ≤ 10s	В	47.5	62.5	°C/W			
Maximum Junction-to- Ambient	Steady- State	$R_{ hetaJA}$	74	110	°C/W			
Maximum Junction-to-Lead	Steady- State	$R_{ hetaJL}$	37	50	°C/W			

II. Die / Package Information:

AO6401 AO6401L (Green Compound)

Process Standard sub-micron Standard sub-micron

low voltage P channel process low voltage P channel process

Package Type6 leads TSOP6 leads TSOPLead FrameCopper with Ag spotCopper with Ag spot

Die AttachAg epoxyAg epoxyBond wireAu 2milsAu 2mils

Mold Material Epoxy resin with silica filler Epoxy resin with silica filler

Filler % (Spherical/Flake) 90/10 100/0
Flammability Rating UL-94 V-0 UL-94 V-0
Backside Metallization Ti / Ni / Ag
Moisture Level Up to Level 1* Up to Level 1*

Note * based on info provided by assembler and mold compound supplier

III. Result of Reliability Stress for AO6401 (Standard) & AO6401L (Green)

Test Item	Test Condition	Time Point	Lot Attribution	Total Sample size	Number of Failures
Solder Reflow Precondition	Standard: 1hr PCT+3 cycle reflow@260°c Green: 168hr 85°c /85%RH +3 cycle reflow@260°c	Ohr	Standard: 16 lots Green: 7 lots	3575pcs	0
HTGB	Temp = 150°c , Vgs=100% of Vgsmax	168 / 500 hrs 1000 hrs	5 lots (Note A*)	410pcs 77+5 pcs / lot	0
HTRB	Temp = 150°c , Vds=80% of Vdsmax	168 / 500 hrs 1000 hrs	5 lots (Note A*)	410pcs 77+5 pcs / lot	0
HAST	130 +/- 2°c , 85%RH, 33.3 psi, Vgs = 80% of Vgs max	100 hrs	Standard: 16 lots Green: 6 lots (Note B**)	1210pcs 50+5 pcs / lot	0
Pressure Pot	121°c , 29.7 psi, 100%RH	96 hrs	Standard: 14 lots Green: 7 lots (Note B**)	1155pcs 50+5 pcs / lot	0
Temperature Cycle	-65 to 150°c , air to air	250 / 500 cycles	Standard: 15 lots Green: 7 lots (Note B**)	1210pcs 50+5 pcs / lot	0

III. Result of Reliability Stress for AO6401 (Standard) & AO6401L (Green)

Continues					
DPA	Internal Vision Cross-section	NA	5 5	5	0
			5 5	5 5	
	X-ray		3	5	
CSAM		NA	5	5	0
Bond Integrity	Room Temp	0hr	40	40 wires	0
	150°c bake	250hr	40	40 wires	
	150°c bake	500hr	40	40 wires	
Solderability	230°c	5 sec	15	15 leads	0
Die shear	150°c	0hr	10	10	0

Note A: The HTGB and HTRB reliability data presents total of available AO6401 and AO6401L burn-in data up to the published date.

Note B: The pressure pot, temperature cycle and HAST reliability data for AO6401 and AO6401L comes from the AOS generic package qualification data.

IV. Reliability Evaluation

FIT rate (per billion): 9.3 MTTF = 12274 years

In general, 500 hrs of HTGB, 150 deg C accelerated stress testing is equivalent to 15 years of lifetime at 55 deg C operating conditions (by applying the Arrhenius equation with an activation energy of 0.7eV and 60% of upper confidence level on the failure rate calculation). AOS reliability group also routinely monitors the product reliability up to 1000 hr at and performs the necessary failure analysis on the units failed for reliability test(s).

The presentation of FIT rate for the individual product reliability is restricted by the actual burn-in sample size of the selected product (AO6401). Failure Rate Determination is based on JEDEC Standard JESD 85. FIT means one failure per billion hours.

Failure Rate =
$$\text{Chi}^2 \times 10^9 / 2[(\text{N}) \text{ (H) (Af)}]$$

= 1.83 × 10⁹ / 2 [(2×164) (168) (258) + (2×164) (500) (258) + (164) (1000) (258)]
= 9.3
MTTF = $10^9 / \text{FIT} = 1.07 \times 10^8 \text{hrs} = 12274 \text{ years}$

Chi² = Chi Squared Distribution, determined by the number of failures and confidence interval **N** = Total Number of units from HTRB and HTGB tests

H = Duration of HTRB/HTGB testing

Af = Acceleration Factor from Test to Use Conditions (Ea = 0.7eV and Tuse = 55°C)

Acceleration Factor [Af] = Exp [Ea/k (1/Tj u - 1/Tj s)]

Acceleration Factor ratio list:

	55 deg C	70 deg C	85 deg C	100 deg C	115 deg C	130 deg C	150 deg C
Af	258	87	32	13	5.64	2.59	1

Tj s = Stressed junction temperature in degree (Kelvin), K = C+273.16

Tj u =The use junction temperature in degree (Kelvin), K = C+273.16

k = Boltzmann's constant, 8.617164 X 10⁻⁵eV / K

V. Quality Assurance Information

Acceptable Quality Level for outgoing inspection: **0.1%** for electrical and visual. Guaranteed Outgoing Defect Rate: **< 25 ppm**Quality Sample Plan: conform to **Mil-Std-105D**