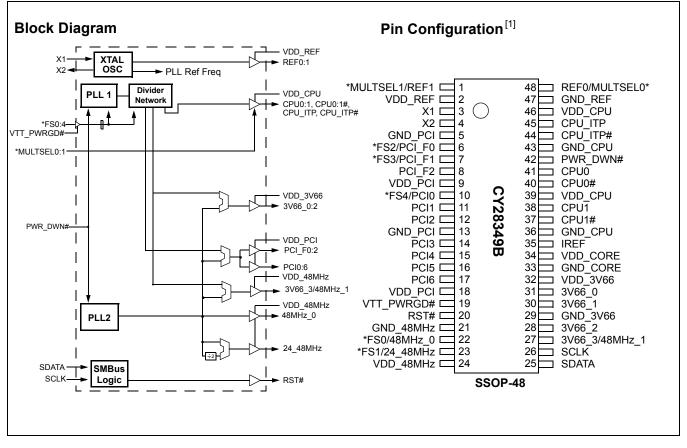


CY28349B


FTG for Intel[®] Pentium[®] 4 CPU and Chipsets

Features

- Compatible to Intel[®] CK-Titan and CK-408 Clock Synthesizer/driver specifications
- System frequency synthesizer for Intel Brookdale 845 and Brookdale – G Pentium[®] 4 chipsets
- Programmable clock output frequency with less than 1-MHz increment
- Integrated fail-safe Watchdog timer for system recovery
- Automatically switch to hardware-selected or softwareprogrammed clock frequency when w timer time-out
- Fixed 3V66 and PCI output frequency mode.
- Capable of generating system RESET after a Watchdog timer time-out occurs or a change in output frequency via SMBus interface

- Support SMBus byte read/write and block read/ write operations to simplify system BIOS development
- · Vendor ID and Revision ID support
- Programmable drive strength support
- Programmable output skew support
- Power management control inputs
- Available in 48-pin SSOP

CPU	3V66	PCI	REF	48M	24_48M
x 3	x 4	x 10	x 2	x 1	x 1

Note:

1. Signals marked with '*' and "^" have internal pull-up and pull-down resistors, respectively.

Pin Definitions

Pin Name	Pin No.	Pin Type	Pin Description
X1	3	I	Crystal Connection or External Reference Frequency Input: This pin has dual functions. It can be used as an external 14.318-MHz crystal connection or as an external reference frequency input.
X2	4	0	<i>Crystal Connection:</i> Connection for an external 14.318-MHz crystal. If using an external reference, this pin must be left unconnected.
REF0/MULTSEL0	48	I/O	Reference Clock 0/Current Multiplier Selection 0: 3.3V 14.318-MHz clock output. This pin also serves as a power-on strap option to determine the current multiplier for the CPU clock outputs. The MULTSEL1:0 definitions are as follows: MULTSEL1:0 00 = Ioh is 4 x IREF 01 = Ioh is 5 x IREF 10 = Ioh is 6 x IREF 11 = Ioh is 7 x IREF
REF1/MULTSEL1	1	I/O	Reference Clock 1/Current Multiplier Selection 1: 3.3V 14.318-MHz clock output. This pin also serves as a power-on strap option to determine the current multiplier for the CPU clock outputs. The MULTSEL1:0 definitions are as follows: MULTSEL1:0 00 = Ioh is 4 x IREF 01 = Ioh is 5 x IREF 10 = Ioh is 6 x IREF 11 = Ioh is 7 x IREF
CPU0:1, CPU0:1#	41, 38, 40, 37	0	CPU Clock Outputs: Frequency is set by the FS0:4 inputs or through serial input interface.
CPU_ITP, CPU_ITP#	44, 45	I/O	CPU Clock Output for ITP: Frequency is set by the FS0:4 inputs or through serial input interface.
3V66_0:2	31, 30, 28	0	66-MHz Clock Outputs: 3.3V fixed 66-MHz clock.
PCI_F0/FS2	6	I/O	<i>Free-running PCI Output 0/Frequency Select 2:</i> 3.3V free-running PCI output. This pin also serves as a power-on strap option to determine device operating frequency as described in the Frequency Selection Table.
PCI_F1/FS3	7	I/O	<i>Free-running PCI Output 1/Frequency Select 3:</i> 3.3V free-running PCI output. This pin also serves as a power-on strap option to determine device operating frequency as described in <i>Table 4</i> .
PCI_F2	8	I/O	Free-running PCI Output 2: 3.3V free-running PCI output.
PCI0/FS4	10	I/O	PCI Output 0/Frequency Select 4: 3.3V PCI output. This pin also serves as a power-on strap option to determine device operating frequency as described in <i>Table 4</i> .
PCI1:6	11, 12, 14, 15, 16, 17	0	PCI Clock Output 1 to 6: 3.3V PCI clock outputs.
48MHz_0/FS0	22	I/O	48-MHz Output/Frequency Select 0: 3.3V fixed 48-MHz, non-spread spectrum output. This pin also serves as a power-on strap option to determine device operating frequency as described in <i>Table 4</i> . This output will be used as the reference clock for USB host controller in Intel 845 (Brookdale) platforms. For Intel Brookdale – G platforms, this output will be used as the VCH reference clock.
24_48MHz/FS1	23	1/0	24- or 48-MHz Output/Frequency Select 1: 3.3V fixed 24-MHz or 48-MHz non-spread spectrum output. This pin also serves as a power-on strap option to determine device operating frequency as described in <i>Table 4</i> . This output will be used as the reference clock for SIO devices in Intel 845 (Brookdale) platforms. For Intel Brookdale – G platforms, this output will be used as the reference clock for both USB host controller and SIO devices. We recommend system designer to configure this output as 48 MHz and "HIGH Drive" by setting Byte [5], Bit [0] and Byte [9], Bit [7], respectively.
3V66_3/48MHz_1	27	0	48-MHz or 66-MHz Output: 3.3V output.

Pin Definitions (continued)

Pin Name	Pin No.	Pin Type	Pin Description
PWR_DWN#	42	I	Power-down Control: 3.3V LVTTL compatible input that places the device in power down mode when held low.
SCLK	26	I	SMBus Clock Input: Clock pin for serial interface.
SDATA	25	I/O	SMBus Data Input: Data pin for serial interface.
RST#	20	O (open-d rain)	System Reset Output: Open-drain system reset output.
IREF	35	I	<i>Current Reference for CPU Output:</i> A precision resistor is attached to this pin which is connected to the internal current reference.
VTT_PWRGD#	19	I	Powergood from Voltage Regulator Module (VRM): 3.3V LVTTL input. VTT_PWRGD# is a level-sensitive strobe used to determine when FS0:4 and MULTSEL0:1 inputs are valid and OK to be sampled (Active LOW). Once VTT_PWRGD# is sampled LOW, the status of this input will be ignored.
VDD_REF, VDD_PCI, VDD_48MHz, VDD_3V66, VDD_CPU	2, 9, 18, 24, 32, 39, 46	Р	3.3V Power Connection: Power supply for CPU outputs buffers, 3V66 output buffers, PCI output buffers, reference output buffers and 48-MHz output buffers. Connect to 3.3V.
GND_PCI, GND_48MHz, GND_3V66, GND_CPU, GND_REF,	5, 13, 21, 29, 36, 43, 47	G	<i>Ground Connection:</i> Connect all ground pins to the common system ground plane.
VDD_CORE	34	Р	3.3V Analog Power Connection: Power supply for core logic, PLL circuitry. Connect to 3.3V.
GND_CORE	33	G	Analog Ground Connection: Ground for core logic, PLL circuitry.

Swing Select Functions

MULTSEL1	MULTSEL0	Board Target Trace/Term Z	Reference R, IREF = V _{DD} /(3*Rr)	Output Current	V _{OH} @ Z
0	0	50Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 4*Iref	1.0V @ 50
0	0	60Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 4*Iref	1.2V @ 60
0	1	50Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 5*Iref	1.25V @ 50
0	1	60Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 5*Iref	1.5V @ 60
1	0	50Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 6*Iref	1.5V @ 50
1	0	60Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 6*Iref	1.8V @ 60
1	1	50Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 7*Iref	1.75V @ 50
1	1	60Ω	Rr = 221 1%, IREF = 5.00 mA	I _{OH} = 7*Iref	2.1V @ 60
0	0	50Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 4*Iref	0.47V @ 50
0	0	60Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 4*Iref	0.56V @ 60
0	1	50Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 5*Iref	0.58V @ 50
0	1	60Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 5*Iref	0.7V @ 60
1	0	50Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 6*Iref	0.7V @ 50
1	0	60Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 6*Iref	0.84V @ 60
1	1	50Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 7*Iref	0.81V @ 50
1	1	60Ω	Rr = 475 1%, IREF = 2.32 mA	I _{OH} = 7*Iref	0.97V @ 60

Serial Data Interface

To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions such as individual clock output buffers, etc. can be individually enabled or disabled.

The register associated with the Serial Data Interface initializes to its default setting upon power-up, and therefore use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required. The interface can also be used during system operation for power management functions.

Data Protocol

The clock driver serial protocol accepts Byte Write, byte read, Block Write and Block Read operation from the controller. For Block Write/Read operation, the bytes must be accessed in sequential order from lowest to highest byte (most significant bit first) with the ability to stop after any complete byte has been transferred. For Byte Write and Byte Read operations, the system controller can access individual indexed bytes. The offset of the indexed byte is encoded in the command code, as described in *Table 1*.

The Block Write and Block Read protocol is outlined in *Table 2* while *Table 3* outlines the corresponding byte write and byte read protocol.

The slave receiver address is 11010010 (D2h).

Table 1. Command Code Definition

Bit	Descriptions
7	0 = Block Read or Block Write operation 1 = Byte Read or Byte Write operation
6.0	Byte offset for Byte Read or Byte Write operation. For Block Read or Block Write operations, these bits should be '0000000'.

Table 2. Block Read and Block Write Protocol

	Block Write Protocol		Block Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
2:8	Slave address – 7 bits	2:8	Slave address – 7 bits
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
11:18	Command Code – 8 bits '00000000' stands for block operation	11:18	Command Code – 8 bits '00000000' stands for block operation
19	Acknowledge from slave	19	Acknowledge from slave
20:27	Byte Count – 8 bits	20	Repeat start
28	Acknowledge from slave	21:27	Slave address – 7 bits
29:36	Data byte 0 – 8 bits	28	Read
37	Acknowledge from slave	29	Acknowledge from slave
38:45	Data byte 1 – 8 bits	30:37	Byte count from slave – 8 bits
46	Acknowledge from slave	38	Acknowledge
	Data Byte N/Slave Acknowledge	39:46	Data byte from slave – 8 bits
	Data Byte N – 8 bits	47	Acknowledge
	Acknowledge from slave	48:55	Data byte from slave – 8 bits
	Stop	56	Acknowledge
			Data bytes from slave/Acknowledge
			Data byte N from slave – 8 bits
			Not Acknowledge
			Stop

Table 3. Byte Read and Byte Write Protocol

	Byte Write Protocol		Byte Read Protocol
Bit	Description	Bit	Description
1	Start	1	Start
2:8	Slave address – 7 bits	2:8	Slave address – 7 bits

Table 3. Byte Read and Byte Write Protocol (continued)

	Byte Write Protocol		Byte Read Protocol
Bit	Description	Bit	Description
9	Write	9	Write
10	Acknowledge from slave	10	Acknowledge from slave
11:18	Command Code – 8 bits '1xxxxxx' stands for byte operation bit[6:0] of the command code represents the offset of the byte to be accessed	11:18	Command Code – 8 bits '1xxxxxx' stands for byte operation bit[6:0] of the command code represents the offset of the byte to be accessed
19	Acknowledge from slave	19	Acknowledge from slave
20:27	Data byte – 8 bits	20	Repeat start
28	Acknowledge from slave	21:27	Slave address – 7 bits
29	Stop	28	Read
		29	Acknowledge from slave
		30:37	Data byte from slave – 8 bits
		38	Not Acknowledge
		39	Stop

Data Byte Configuration Map

Data Byte 0

Bit	Pin#	Name	Description	Power On Default
Bit 7	-	Spread Select2	'000' = OFF	0
Bit 6	-	Spread Select1	'001' = Reserved	0
Bit 5	-	Spread Select0	'010' = Reserved	0
			'011' = Reserved	
			'100' = ± 0.25%	
			'101' = – 0.5%	
			'110' = ±0.5%	
			'111' = ±0.38%	
Bit 4	-	SEL4	SW Frequency selection bits. See Table 4.	0
Bit 3	-	SEL3		0
Bit 2	-	SEL2		0
Bit 1	-	SEL1		0
Bit 0	_	SEL0		0

Bit	Pin#	Name	Description	Power On Default
Bit 7	38, 37	CPU1, CPU1#	(Active/Inactive)	1
Bit 6	41, 40	CPU0, CPU0#	(Active/Inactive)	1
Bit 5	22	48MHz	(Active/Inactive)	1
Bit 4	23	24_48MHz	(Active/Inactive)	1
Bit 3	27	3V66_3	(Active/Inactive)	1
Bit 2	28	3V66_2	(Active/Inactive)	1
Bit 1	30	3V66_1	(Active/Inactive)	1
Bit 0	31	3V66_0	(Active/Inactive)	1

Data Byte 2

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	-	Reserved	Reserved	0
Bit 6	17	PCI6	(Active/Inactive)	1
Bit 5	16	PCI5	(Active/Inactive)	1
Bit 4	15	PCI4	(Active/Inactive)	1
Bit 3	14	PCI3	(Active/Inactive)	1
Bit 2	12	PCI2	(Active/Inactive)	1
Bit 1	11	PCI1	(Active/Inactive)	1
Bit 0	10	PCI0	(Active/Inactive)	1

Data Byte 3

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	8	PCI_F2	(Active/Inactive)	1
Bit 6	7	PCI_F1	(Active/Inactive)	1
Bit 5	6	PCI_F0	(Active/Inactive)	1
Bit 4	-	Reserved	Reserved	0
Bit 3	44, 45	CPU_ITP, CPU_ITP#	(Active/Inactive)	1
Bit 2	-	Reserved	Reserved	0
Bit 1	1	REF1	(Active/Inactive)	1
Bit 0	48	REF0	(Active/Inactive)	1

Data Byte 4

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	-	MULTSEL_Override	This bit control the selection of IREF multiple. 0 = HW control; IREF multiplier is determined by MULTSEL[0:1] input pins 1 = SW control; IREF multiplier is determined by Byte[4], Bit[5:6].	0
Bit 6	-	SW_MULTSEL1	IREF multiplier	0
Bit 5	-	SW_MULTSEL0	00 = Ioh is 4 x IREF 01 = Ioh is 5 x IREF 10 = Ioh is 6 x IREF 11 = Ioh is 7 x IREF	0
Bit 4	-	Reserved	Reserved	Reserved
Bit 3	-	Reserved	Reserved	Reserved
Bit 2	-	Reserved	Reserved	Reserved
Bit 1	-	Reserved	Reserved	Reserved
Bit 0	_	Reserved	Reserved	Reserved

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	10	Latched FS4 input	Latched FS[4:0] inputs. These bits are read-only.	Х
Bit 6	7	Latched FS3 input		Х
Bit 5	6	Latched FS2 input		Х
Bit 4	23	Latched FS1 input		Х
Bit 3	22	Latched FS0 input		Х

Data Byte 5 (continued)

Bit	Pin#	Name	Pin Description	Power On Default
Bit 2	-	FS_Override	0 = Select operating frequency by FS[4:0] input pins 1 = Select operating frequency by SEL[4:0] settings	0
Bit 1	27	SEL 3V66	0 = 48-MHz output on pin 27 1 = 66-MHz output on pin 27	0
Bit 0	23	SEL 48MHZ	0 = 24-MHz 1 = 48-MHz	0

Data Byte 6

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	-	Revision_ID3	Revision ID bit[3]	0
Bit 6	-	Revision_ID2	Revision ID bit[2]	0
Bit 5	-	Revision_ID1	Revision ID bit[1]	0
Bit 4	-	Revision_ID0	Revision ID bit[0]	0
Bit 3	-	Vendor_ID3	Bit[3] of Cypress's Vendor ID. This bit is read-only.	1
Bit 2	-	Vendor_ID2	Bit[2] of Cypress's Vendor ID. This bit is read-only.	0
Bit 1	-	Vendor _ID1	Bit[1] of Cypress's Vendor ID. This bit is read-only.	0
Bit 0	-	Vendor_ID0	Bit[0] of Cypress's Vendor ID. This bit is read-only.	0

Data Byte 7

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	-	Reserved	Reserved	0
Bit 6	-	Reserved	Reserved	0
Bit 5	-	Reserved	Reserved	0
Bit 4	-	Reserved	Reserved	0
Bit 3	-	Reserved	Reserved	0
Bit 2	-	Reserved	Reserved	0
Bit 1	-	Reserved	Reserved	0
Bit 0	-	Reserved	Reserved	0

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	_	Reserved	Reserved	0
Bit 6	_	Reserved	Reserved	0
Bit 5	-	WD_TIMER4	These bits store the time-out value of the Watchdog Timer.	1
Bit 4	-	WD_TIMER3	The scale of the timer is determine by the pre-scaler. The timer can support a value of 150 ms to 4.8 sec when the	1
Bit 3	-	WD_TIMER2	pre-scaler is set to 150 ms. If the prescaler is set to 2.5 sec,	1
Bit 2	-	WD_TIMER1	it can support a value from 2.5 sec to 80 sec. When the	1
Bit 1	-	WD_TIMER0	Watchdog Timer reaches "0," it will set the WD_TO_STATUS bit and generate Reset if RST_EN_WD is enabled.	1
Bit 0	-	WD_PRE_SCALER	0 = 150 ms 1 = 2.5 sec	0

Data Byte 9

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	-	48MHz_DRV	48MHz and 24_48MHz clock output drive strength 0 = Normal 1 = High Drive (Recommend to set to high drive if this output is being used to drive both USB and SIO devices in Intel Brookdale - G platforms)	0
Bit 6	-	PCI_DRV	PCI clock output drive strength 0 = Normal 1 = High Drive	0
Bit 5	-	3V66_DRV	3V66 clock output drive strength 0 = Normal 1 = High Drive	0
Bit 4	-	RST_EN_WD	This bit will enable the generation of a Reset pulse when a Watchdog timer time-out occurs. 0 = Disabled 1 = Enabled	0
Bit 3	-	RST_EN_FC	This bit will enable the generation of a Reset pulse after a frequency change occurs. 0 = Disabled 1 = Enabled	0
Bit 2	-	WD_TO_STATUS	Watchdog Timer Time-out Status bit 0 = No time-out occurs (Read); Ignore (Write) 1 = time-out occurred (Read); Clear WD_TO_STATUS (Write)	0
Bit 1	_	WD_EN	0 = Stop and reload Watchdog Timer 1 = Enable Watchdog Timer. It will start counting down after a frequency change occurs. Note: CY28349B will generate system reset, reload a recovery frequency, and lock itself into a recovery frequency mode after a Watchdog Timer time-out occurs. Under recovery frequency mode, CY28349B will not respond to any attempt to change output frequency via the SMBus control bytes. System software can unlock CY28349B from its recovery frequency mode by clearing the WD_EN bit.	0
Bit 0	-	Reserved	Reserved	0

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	_	CPU_Skew2	CPU skew control	0
Bit 6	-	CPU_Skew1	000 = Normal 001 = -150 ps	0
Bit 5	_	CPU_Skew0	010 = -300 ps 011 = -450 ps 100 = +150 ps 101 = +300 ps 110 = +450 ps 111 = +600 ps	0
Bit 4	-	Fixed 3V66/PCI	Fixed 3V66 and PCI output mode 0 = Disabled 1 = Enabled When enabled, 3V66 and PCI output frequency will be fixed at 64 MHz and 32 MHz respectively.	0

Data Byte 10 (continued)

Bit	Pin#	Name	Pin Description	Power On Default
Bit 3	-	PCI_Skew1	PCI skew control	0
Bit 2	-	PCI_Skew0	00 = Normal 01 = -500 ps 10 = Reserved 11 = +500 ps	0
Bit 1	-	3V66_Skew1	3V66 skew control	0
Bit 0	-	3V66_Skew0	00 = Normal 01 = -150 ps 10 = +150 ps 11 = +300 ps	0

Data Byte 11

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	-	ROCV_FREQ_N7	If ROCV_FREQ_SEL is set, the values programmed in	0
Bit 6	-	ROCV_FREQ_N6	ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0] will be used to determine the recovery CPU output frequency	0
Bit 5	-	ROCV_FREQ_N5	when a Watchdog Timer time-out occurs.	0
Bit 4	-	ROCV_FREQ_N4	The setting of FS_Override bit determines the frequency	0
Bit 3	-	ROCV_FREQ_N3	ratio for CPU and other output clocks. When FS_Override bit is cleared, the same frequency ratio stated in the	0
Bit 2	-	ROCV_FREQ_N2	Latched FS[4:0] register will be used. When it is set, the	0
Bit 1	-	ROCV_FREQ_N1	frequency ratio stated in the SEL[4:0] register will be used.	0
Bit 0	-	ROCV_FREQ_N0		0

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	_	ROCV_FREQ_SEL	ROCV_FREQ_SEL determines the source of the recover frequency when a Watchdog Timer time-out occurs. The clock generator will automatically switch to the recovery CPU frequency based on the selection on ROCV_FREQ_SEL. 0 = From latched FS[4:0] 1 = From the settings of ROCV_FREQ_N[7:0] & ROCV_FREQ_M[6:0]	0
Bit 6	-	ROCV_FREQ_M6	If ROCV_FREQ_SEL is set, the values programmed in	0
Bit 5	-	ROCV_FREQ_M5	ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0] will be used to determine the recovery CPU output	0
Bit 4	-	ROCV_FREQ_M4	frequency.when a Watchdog Timer time-out occurs.	0
Bit 3	-	ROCV_FREQ_M3	The setting of FS_Override bit determines the frequency	0
Bit 2	-	ROCV_FREQ_M2	ratio for CPU and other output clocks. When FS_Override bit is cleared, the same frequency ratio stated in the	0
Bit 1	-	ROCV_FREQ_M1	Latched FS[4:0] register will be used. When it is set, the	0
Bit 0	-	ROCV_FREQ_M0	frequency ratio stated in the SEL[4:0] register will be used.	0

Data Byte 13

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	-	CPU_FSEL_N7	If Prog_Freq_EN is set, the values programmed in	0
Bit 6	-	CPU_FSEL_N6	CPU_FSEL_N[7:0] and CPU_FSEL_M[6:0] will be used to determine the CPU output frequency. The new	0
Bit 5	-	CPU_FSEL_N5	frequency will start to load whenever CPU_FSELM[6:0] is	0
Bit 4	-	CPU_FSEL_N4	updated.	0
Bit 3	-	CPU_FSEL_N3	The setting of FS_Override bit determines the frequency ratio for CPU and other output clocks. When it is cleared,	0
Bit 2	-	CPU_FSEL_N2	the same frequency ratio stated in the Latched FS[4:0]	0
Bit 1	-	CPU_FSEL_N1	register will be used. When it is set, the frequency ratio stated in the SEL[4:0] register will be used.	0
Bit 0	-	CPU_FSEL_N0		0

Data Byte 14

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	-	Pro_Freq_EN	Programmable output frequencies enabled 0 = Disabled 1 = Enabled	0
Bit 6	-	CPU_FSEL_M6	If Prog_Freq_EN is set, the values programmed in	0
Bit 5	-	CPU_FSEL_M5 CPU_FSEL_M[6:	CPU_FSEL_N[7:0] and CPU_FSEL_M[6:0] will be used to determine the CPU output frequency. The new	0
Bit 4	-	CPU_FSEL_M4	frequency will start to load whenever CPU_FSELM[6:0] is	0
Bit 3	-	CPU_FSEL_M3	updated.	0
Bit 2	-	CPU_FSEL_M2 The setting of FS_Override bit determines the frequency ratio for CPU and other output clocks. When it is cleared,	0	
Bit 1	-	CPU_FSEL_M1	SEL M1 the same frequency ratio stated in the Latched FS[4:0]	0
Bit 0	-	CPU_FSEL_M0	register will be used. When it is set, the frequency ratio stated in the SEL[4:0] register will be used.	0

Data Byte 15

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	-	Reserved	Reserved	0
Bit 6	-	Reserved	Reserved	0
Bit 5	-	Reserved	Reserved	0
Bit 4	-	Reserved	Reserved	0
Bit 3	-	Reserved	Reserved	0
Bit 2	-	Reserved	Reserved	0
Bit 1	-	Vendor Test Mode	Reserved. Write with "1"	1
Bit 0	- 1	Vendor Test Mode	Reserved. Write with "1"	1

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	-	Reserved	Reserved	0
Bit 6	-	Reserved	Reserved	0
Bit 5	-	Reserved	Reserved	0
Bit 4	-	Reserved	Reserved	0
Bit 3	-	Reserved	Reserved	0
Bit 2	-	Reserved	Reserved	0
Bit 1	-	Reserved	Reserved	0
Bit 0	-	Reserved	Reserved	0

Data Byte 17

Bit	Pin#	Name	Pin Description	Power On Default
Bit 7	-	Reserved	Reserved	0
Bit 6	-	Reserved	Reserved	0
Bit 5	-	Reserved	Reserved	0
Bit 4	-	Reserved	Reserved	0
Bit 3	-	Reserved	Reserved	0
Bit 2	-	Reserved	Reserved	0
Bit 1	-	Reserved	Reserved	0
Bit 0	-	Reserved	Reserved	0

Table 4. Frequency Selection Table

	Inp	out Conditi	ions		Output Frequency			
FS4	FS3	FS2	FS1	FS0				PLL Gear Constants
SEL4	SEL3	SEL2	SEL1	SEL0	CPU	3V66	PCI	(G)
0	0	0	0	0	100.7	67.1	33.6	48.00741
0	0	0	0	1	100.9	67.3	33.6	48.00741
0	0	0	1	0	108.0	72.0	36.0	48.00741
0	0	0	1	1	101.2	67.5	33.7	48.00741
0	0	1	0	0	114.0	76.0	38.0	48.00741
0	0	1	0	1	117.0	78.0	39.0	48.00741
0	0	1	1	0	120.0	80.0	40.0	48.00741
0	0	1	1	1	123.0	82.0	41.0	48.00741
0	1	0	0	0	126.0	63.0	31.5	48.00741
0	1	0	0	1	130.0	65.0	32.5	48.00741
0	1	0	1	0	133.9	67.0	33.5	48.00741
0	1	0	1	1	134.2	67.1	33.6	48.00741
0	1	1	0	0	134.5	67.3	33.6	48.00741
0	1	1	0	1	148.0	74.0	37.0	48.00741
0	1	1	1	0	152.0	76.0	38.0	48.00741
0	1	1	1	1	156.0	78.0	39.0	48.00741
1	0	0	0	0	160.0	80.0	40.0	48.00741
1	0	0	0	1	164.0	82.0	41.0	48.00741
1	0	0	1	0	167.4	66.9	33.5	48.00741
1	0	0	1	1	170.0	68.0	34.0	48.00741
1	0	1	0	0	175.0	70.0	35.0	48.00741
1	0	1	0	1	180.0	72.0	36.0	48.00741
1	0	1	1	0	185.0	74.0	37.0	48.00741
1	0	1	1	1	190.0	76.0	38.0	48.00741
1	1	0	0	0	166.8	66.7	33.4	48.00741
1	1	0	0	1	100.2	66.8	33.4	48.00741
1	1	0	1	0	133.6	66.8	33.4	48.00741
1	1	0	1	1	200.4	66.8	33.4	48.00741
1	1	1	0	0	166.6	66.6	33.3	48.00741
1	1	1	0	1	100.0	66.6	33.3	48.00741
1	1	1	1	0	200.0	66.6	33.3	48.00741

Table 4. Frequency Selection Table (continued)

	Input Conditions					Output Frequency		
FS4	FS3	FS2	FS1	FS0				PLL Gear Constants
SEL4	SEL3	SEL2	SEL1	SEL0	CPU	3V66	PCI	(G)
1	1	1	1	1	133.3	66.6	33.3	48.00741

Programmable Output Frequency, Watchdog Timer and Recovery Output Frequency Functional Description

The Programmable Output Frequency feature allows users to generate any CPU output frequency from the range of 50 MHz to 248 MHz. Cypress offers the most dynamic and the simplest programming interface for system developers to utilize this feature in their platforms.

The Watchdog Timer and Recovery Output Frequency features allow users to implement a recovery mechanism when the system hangs or gets unstable. System BIOS or other control software can enable the Watchdog Timer before they attempt to make a frequency change. If the system hangs and a Watchdog Timer time-out occurs, a system reset will be generated and a recovery frequency will be activated.

All of the related registers are summarized in Table 5.

Table 5. Register Summary

Name	Description
Pro_Freq_EN	Programmable output frequencies enabled 0 = Disabled (default) 1 = Enabled. When it is disabled, the operating output frequency will be determined by either the latched value of FS[4:0] inputs or the programmed value of SEL[4:0]. If FS_Override bit is clear, latched FS[4:0] inputs will be used. If FS_Override bit is set, programmed value of SEL[4:0] will be used. When it is enabled, the CPU output frequency will be determined by the programmed value of CPUFSEL_N, CPUFSEL_M and the PLL Gear Constant. The program value of FS_Override, SEL[4:0] or the latched value of FS[4:0] will determine the PLL Gear Constant and the frequency ratio between CPU and other frequency outputs.
FS_Override	 When Pro_Freq_EN is cleared or disabled, 0 = Select operating frequency by FS input pins (default) 1 = Select operating frequency by SEL bits in SMBus control bytes. When Pro_Freq_EN is set or enabled, 0 = Frequency output ratio between CPU and other frequency groups and the PLL Gear Constant are based on the latched value of FS input pins (default) 1 = Frequency output ratio between CPU and other frequency groups and the PLL Gear Constant are based on the programmed value of SEL bits in SMBus control bytes.
CPU_FSEL_N, CPU_FSEL_M	When Prog_Freq_EN is set or enabled, the values programmed in CPU_FSEL_N[7:0] and CPU_FSEL_M[6:0] determines the CPU output frequency. The new frequency will start to load whenever there is an update to either CPU_FSEL_N[7:0] or CPU_FSEL_M[6:0]. Therefore, it is recommended to use Word or Block write to update both registers within the same SMBus bus operation. The setting of FS_Override bit determines the frequency ratio for CPU, AGP and PIC. When FS_Override is cleared or disabled, the frequency ratio follows the latched value of the FS input pins. When FS_Override is set or enabled, the frequency ratio follows the programmed value of SEL bits in SMBus control bytes.
ROCV_FREQ_SEL	ROCV_FREQ_SEL determines the source of the recover frequency when a Watchdog timer time-out occurs. The clock generator will automatically switch to the recovery CPU frequency based on the selection on ROCV_FREQ_SEL. 0 = From latched FS[4:0] 1 = From the settings of ROCV_FREQ_N[7:0] & ROCV_FREQ_M[6:0].
ROCV_FREQ_N[7:0], ROCV_FREQ_M[6:0]	When ROCV_FREQ_SEL is set, the values programmed in ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0] will be used to determine the recovery CPU output frequency when a Watchdog Timer time-out occurs The setting of FS_Override bit determines the frequency ratio for CPU, AGP and PIC. When it is cleared, the same frequency ratio stated in the Latched FS[4:0] register will be used. When it is set, the frequency ratio stated in the SEL[4:0] register will be used. The new frequency will start to load whenever there is an update to either ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0]. Therefore, it is recommended to use Word or Block Write to update both registers within the same SMBus bus operation.
WD_EN	0 = Stop and reload Watchdog Timer 1 = Enable Watchdog timer. It will start counting down after a frequency change occurs.

Table 5. Register Summary (continued)

Name	Description
WD_TO_STATUS	Watchdog Timer Time-out Status bit 0 = No time-out occurs (READ); Ignore (WRITE) 1 = Time-out occurred (READ); Clear WD_TO_STATUS (WRITE).
WD_TIMER[4:0]	These bits store the time-out value of the Watchdog timer. The scale of the timer is determine by the pre-scaler. The timer can support a value of 150 ms to 4.8 sec when the prescaler is set to 150 ms. If the prescaler is set to 2.5 sec, it can support a value from 2.5 sec to 80 sec. When the Watchdog timer reaches "0", it will set the WD_TO_STATUS bit.
WD_PRE_SCALER	0 = 150 ms 1 = 2.5 sec
RST_EN_WD	This bit will enable the generation of a Reset pulse when a Watchdog timer time-out occurs. 0 = Disabled 1 = Enabled
RST_EN_FC	This bit will enable the generation of a Reset pulse after a frequency change occurs. 0 = Disabled 1 = Enabled

Program the CPU Output Frequency

When the programmable output frequency feature is enabled (Pro_Freq_EN bit is set), the CPU output frequency is determined by the following equation:

Fcpu = G * (N+3)/(M+3).

"N" and "M" are the values programmed in Programmable Frequency Select N-Value Register and M-Value Register, respectively.

"G" stands for the PLL Gear Constant, which is determined by the programmed value of FS[4:0] or SEL[4:0]. The value is listed in *Table 4*.

The ratio of (N+3) and (M+3) need to be greater than "1" [(N+3)/(M+3) > 1].

The following table lists set of N and M values for different frequency output ranges. This example use a fixed value for the M-Value Register and select the CPU output frequency by changing the value of the N-Value Register.

Frequency Ranges	Gear Constants	Fixed Value for M-Value Register	Range of N-Value Register for Different CPU Frequency
50 MHz–129 MHz	48.00741	93	97–255
130 MHz–248 MHz	48.00741	45	127–245

CY28349B

Maximum Ratings

(Above which the useful life may be impaired. For user	r guide-
lines, not tested.)	
Supply Voltage0.5 to	+7.0V

Input Voltage –0.5V to V_{DD}+0.5

Storage Temperature (Non-condensing) –65°C to +150°C
Max. Soldering Temperature (10 sec) +260°C
Junction Temperature +150°C
Package Power Dissipation 1W
Static Discharge Voltage

Operating Conditions Over which Electrical Parameters are Guaranteed^[2]

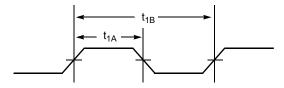
Parameter Description		Min.	Max.	Unit
V _{DD_REF} , V _{DD_PCI} ,V _{DD_CORE} , V _{DD_3V66} , V _{DD_48} MHz, V _{DD_CPU} ,	3.3V Supply Voltages	3.135	3.465	V
T _A	Operating Temperature, Ambient	0	70	°C
C _{in}	Input Pin Capacitance		5	pF
C _{XTAL}	XTAL Pin Capacitance		22.5	pF
CL	Max. Capacitive Load on 48MHz, REF PCICLK, 3V66		20 30	pF
f _(REF)	Reference Frequency, Oscillator Nominal Value	14.318	14.318	MHz

Electrical Characteristics Over the Operating Range

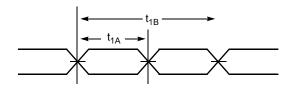
Parameter	Description	Test Cond	litions	Min.	Max.	Unit
V _{IH}	High-level Input Voltage	Except Crystal Pads. Threshold voltage for crystal pads = $V_{DD}/2$		2.0		V
V _{IL}	Low-level Input Voltage	Except Crystal Pads			0.8	V
V _{OH}	High-level Output Voltage	48MHz, REF, 3V66	I _{OH} = –1 mA	2.4		V
		PCI	I _{OH} = –1 mA	2.4		V
V _{OL}	Low-level Output Voltage	48MHz, REF, 3V66	I _{OL} = 1 mA		0.4	V
		PCI	I _{OL} = 1 mA		0.55	V
I _{IH}	Input High Current	$0 \le V_{IN} \le V_{DD}$		-5	5	mA
IIL	Input Low Current	$0 \le V_{IN} \le V_{DD}$		-5	5	mA
	High-level Output Current	CPU	Type X1, V _{OH} = 0.65V	12.9		mA
		For I _{OH} =6*IRef Configuration	Type X1, V _{OH} = 0.74V		14.9	
		REF, 48 MHz	Type 3, V _{OH} = 1.00V	-29		
			Type 3, V _{OH} = 3.135V		-23	
		3V66, PCI	Type 5, V _{OH} = 1.00V	-33		
			Type 5, V _{OH} = 3.135V		-33	
I _{OL} LC	Low-level Output Current	REF, 48MHz	Type 3, V _{OL} = 1.95V	29		mA
			Type 3, V _{OL} = 0.4V		27	
		3V66, PCI,	Type 5, V _{OL} =1.95 V	30		
			Type 5, V _{OL} = 0.4V		38	
I _{OZ}	Output Leakage Current	Three-state			10	mA
I _{DD3}	3.3V Power Supply Current	nt V _{DD_CORE} /V _{DD33} = 3.465V, F _{CPU} = 133 MHz			250	mA
I _{DDPD3}	3.3V Shutdown Current	$V_{DD CORE}/V_{DDQ3} = 3.465V$		10	40	mA

Note: 2. Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.

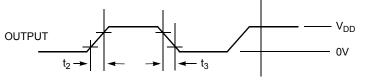
Switching Characteristics Over the Operating Range^[3]

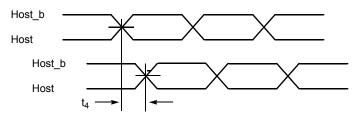

Parameter	Output	Description	Test Conditions	Min.	Max.	Unit
t ₁	All	Output Duty Cycle ^[4]	$t_{1A}/(t_{1B})$	45	55	%
t ₂	CPU	Rise Time	Measured at 20% to 80% of V _{oh}	175	700	ps
t ₂	48MHz, REF	Rising Edge Rate	Between 0.4V and 2.4V	0.5	2.0	V/ns
t ₂	PCI, 3V66,	Rising Edge Rate	Between 0.4V and 2.4V	1.0	4.0	V/ns
t ₃	CPU	Fall Time	Measured at 80% to 20% of V _{oh}	175	700	ps
t ₃	48MHz, REF	Falling Edge Rate	Between 2.4V and 0.4V	0.5	2.0	V/ns
t ₃	PCI, 3V66	Falling Edge Rate	Between 2.4V and 0.4V	1.0	4.0	V/ns
t ₄	CPU	CPU-CPU Skew	Measured at Crossover		150	ps
t ₅	3V66 [0:1]	3V66-3V66 Skew	Measured at 1.5V		500	ps
t ₆	PCI	PCI-PCI Skew	Measured at 1.5V		500	ps
t ₇	3V66,PCI	3V66-PCI Clock Skew	3V66 leads. Measured at 1.5V	1.5	3.5	ns
t ₈	CPU	Cycle-Cycle Clock Jitter	Measured at Crossover $t_8 = t_{8A} - t_{8B}$ With all outputs running		200	ps
t ₉	3V66	Cycle-Cycle Clock Jitter Measured at 1.5V $t_{9} = t_{9A} - t_{9B}$			250	ps
t ₉	48MHz	Cycle-Cycle Clock Jitter	Measured at 1.5V $t_{9} = t_{9A} - t_{9B}$		350	ps
t ₉	PCI	Cycle-Cycle Clock Jitter	Measured at 1.5V $t_{9} = t_{9A} - t_{9B}$		500	ps
t ₉	REF	Cycle-Cycle Clock Jitter	Measured at 1.5V $t_{9} = t_{9A} - t_{9B}$		1000	ps
	CPU, PCI	Settle Time	CPU and PCI clock stabilization from power-up		3	ms
	CPU	Rise/Fall Matching	Measured with test loads ^[5, 6]		20%	
	CPU	Overshoot	Measured with test loads ^[6]		V _{oh} + 0.2	V
	CPU	Undershoot	Measured with test loads ^[6]	-0.2		V
V _{oh}	CPU	High-level Output Voltage	Measured with test loads ^[6]	0.65	0.74	V
V _{ol}	CPU	Low-level Output Voltage	Measured with test loads ^[6]	0.0	0.05	V
V _{crossover}	CPU	Crossover Voltage	Measured with test loads ^[6]	45% of 0.65	55% of 0.74	V

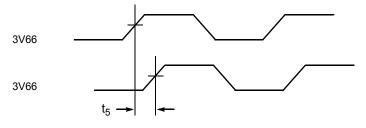
Notes: 3. All parameters specified with loaded outputs. 4. Duty cycle is measured at 1.5V when V_{DD} = 3.3V. When V_{DD} = 2.5V, duty cycle is measured at 1.25V. 5. Determined as a fraction of 2*(Trp – Trn)/(Trp + Trn) Where Trp is a rising edge and Trn is an intersecting falling edge. 6. The test load is R_s = 33.2 Ω , R_p = 49.9 Ω in test circuit.

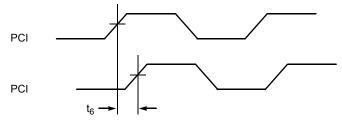


Switching Waveforms

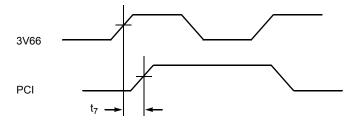

Duty Cycle Timing (Single-ended Output)

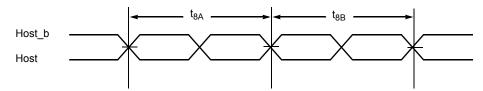

Duty Cycle Timing (CPU Differential Output)


All Outputs Rise/Fall Time

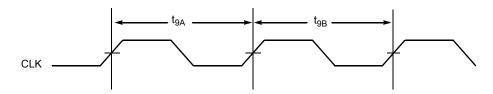

CPU-CPU Clock Skew

3V66-3V66 Clock Skew


PCI-PCI Clock Skew

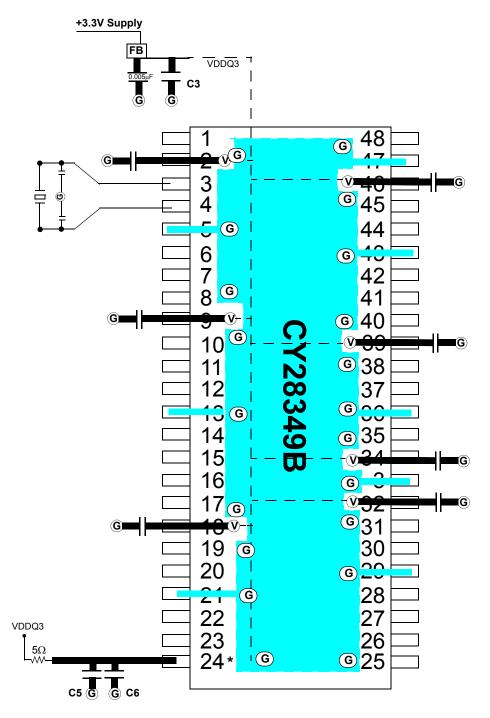


Switching Waveforms (continued)


3V66-PCI Clock Skew

CPU Clock Cycle-Cycle Jitter

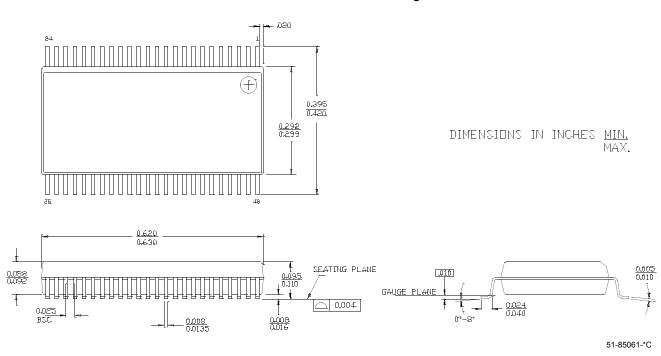
Cycle-Cycle Clock Jitter


Ordering Information

Ordering Code	Package Type	Operating Range
CY28349BOC	48-pin SSOP	Commercial, 0°C to 70°C
CY28349BOCT	48-pin SSOP – Tape and Reel	Commercial, 0°C to 70°C
Lead-free		· ·
CY28349BOXC	48-pin SSOP	Commercial, 0°C to 70°C
CY28349BOXCT	48-pin SSOP – Tape and Reel	Commercial, 0°C to 70°C

CY28349B

Layout Example


(G) = VIA to GND plane layer (V) =VIA to respective supply plane layer

Note: Each supply plane or strip should have a ferrite bead and capacitors All bypass caps = 0.1 μF ceramic

* For use with onboard video using 48 MHz for Dot Clock or connect to VDDQ3

Package Diagram

48-lead Shrunk Small Outline Package O48

Intel and Pentium are registered trademarks of Intel Corporation. All products and company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

Document Title: CY28349B FTG for Intel [®] Pentium [®] 4 CPU and Chipsets Document Number: 38-07454					
REV.	ECN NO.	lssue Date	Orig. of Change	Description of Change	
**	117127	08/13/02	RGL	New Data Sheet	
*A	122932	12/17/02	RBI	Add power up requirements to operating condition information.	
*В	334154	See ECN	RGL	Added Lead-free	