

NAU8315 Datasheet Revision 1.6

This page is intentionally left blank

 \blacksquare **Contents**

1.1 List of Figures

1.2 List of Tables

2 GENERAL DESCRIPTION

The NAU8315 is a mono high efficiency filter-free Class-D audio amplifier, which is capable of driving a 4Ω load with up to 3.2W output power. This device provides Enable control and I2S audio input with low standby current and fast start-up time.

The NAU8315 is ideal for the portable applications, as it has advanced features like 80dB PSRR, 91% efficiency, ultra-low quiescent current and superior EMI performance. NAU8315 is available in a 12 ball Miniature WLCSP package, a 9 ball Miniature WLCSP package and a 20-pin QFN package.

Key Features

- **Pin Selectable Gain Setting**
Pin Selectable 12S Left or B
- Pin Selectable I2S Left or Right Channel selection
- **Pin Selectable PCM time slot**
- \Box Low Output Noise: 12 µVRMS
- 80dB PSRR @217Hz
- **Low Current Shutdown and Standby Modes**
- Click-and Pop Suppression: 26 µVRMS
- Sampling rate from 8K to 96 KHz
- **Package: 9 or 12 ball WLCSP & 20-pin QFN**
Powerful Mono Class-D Amplifier:
- Powerful Mono Class-D Amplifier:
- \blacksquare 3.2W (4Ω @ 5V, 10% THD+N)
 \blacksquare 1.76W (4Ω @ 4.2V, 1% THD+N
- $1.76W (4Ω @ 4.2V, 1% THD+N)$

1.8W (8O @ 5V 10% THD+N)
- 1.8W (8Ω @ 5V, 10% THD+N)
1.0W (8Ω @ 4.2V, 1% THD+N)
- 1.0W $(8Ω @ 4.2V, 1% THD+N)$

Applications

-
- Gaming Controllers

Wireless (VR) Head **Wireless (VR) Headset**

Smart Remote Controlle
- Smart Remote Controller
- **Notebooks / Tablet PCs**
Personal Media Players
- **Personal Media Players**
Part Illtrasonic speakers
- Ultrasonic speakers

3 PIN CONFIGURATIONS

The NAU8315 **12 Ball WLCSP** package is shown in **[Figure 1](#page-6-1)**.

Figure 1 Pin Configuration of WLCSP12 NAU8315 (TOP VIEW)

The NAU8315 **9 Ball WLCSP** package is shown in **[Figure 1](#page-6-1)**.

Figure 2 Pin Configuration of WLCSP9 NAU8315 (TOP VIEW)

Figure 3 Pin Configuration of QFN20 NAU8315

4 PIN DESCRIPTIONS

Pin descriptions for the NAU8315 are provided in **[Table 1.](#page-9-1)**

**Note: For WLCSP9 the NC ball C2 can be tied to VDD for convenient PCB layout.

*Note: For 20 pin QFN the NC pins can be tied to VSS for convenient PCB layout.

5 SYSTEM DIAGRAM

5.1 Reference System Diagram

A basic system reference diagram for stereo I2S is provided in **[Figure 4](#page-10-2)**.

Figure 4 NAU8315 Simplified System Diagram

6 BLOCK DIAGRAM

A Block Diagram for the NAU8315 is provided in **[Figure 5](#page-11-1)**.

Figure 5 NAU8315 Block Diagram

7 Electrical Characteristics

The tables in this chapter provide the various electrical parameters for the NAU8315 and their values.

7.1 Absolute Maximum Ratings

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely influence product reliability and result in failures not covered by the warranty.

7.2 Operating Conditions

Recommended Operating Conditions

7.3 Electrical Parameters

Conditions: VDD= $4.2V$. R_L = 8 Ω + 33 µH, f = 1kHz, 48kHz sample rate, BCLK=12.288MHz, gain=12dB, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$

Note 1 : PSRR = 20 x LOG10(GAIN x ∆VDD/∆(SPKP-SPKN)) dB

7.4 Digital Input Parameters

Digital Inputs FS, BCLK, DACIN & EN.

Note: I2S signals can be 1.8V

7.5 Typical Operating Plots

Conditions: VDD= 4.2V. RL = 8 Ω + 33 µH, f = 1kHz, 48kHz sample rate, BCLK=12.288MHz, TA = 25°C, gain=12dB, unless otherwise specified**.**

Conditions: VDD= $4.2V$. R_L = 8 Ω + 33 µH, f = 1kHz, 48kHz sample rate, BCLK=12.288MHz, T_A = 25°C, gain=12dB, unless otherwise specified**.**

Conditions: VDD= $4.2V$. R_L = 8 Ω + 33 µH, f = 1kHz, 48kHz sample rate, BCLK=12.288MHz, T_A = 25°C, gain=12dB, unless otherwise specified**.**

8 FUNCTIONAL DESCRIPTION

This chapter provides detailed descriptions of the major functions of the NAU8315 Amplifier.

8.1 Inputs

The NAU8315 provides digital inputs to acquire and process audio signals with high fidelity and flexibility. The audio input path is from an I2S/PCM Interface, using the FSL, FSR, BCLK & DACIN pins.

The device is enabled by setting the EN pin high and disabled by setting EN to 0V. The EN, FSL, FSR, BCLK & DACIN pins all have a low input threshold voltage to allow for operation from a host with low IO supply voltage.

The GAIN input pin is a special input pin which essentially is an ADC input. The ADC tied to this pin has 5 decision levels and can therefore select 5 modes of operation each.

The GAIN input pin can be configured as shown in the table below. The GAIN set represents the signal voltage gain of the differential DAC outputs to the differential modulator outputs or speaker outputs. The differential DAC full scale reference is 1.8Vpk. Note that on the 9-Ball WLCSP package the gain is set to 12dB fixed.

Table 2 GAIN Configurations for the NAU8315

The GAIN input ADC converts the input levels set by the external pin configuration and internal voltage dividers into a digital representation that sets the internal GAIN mode. There are a total of 5 modes having different gains as shown above. Gain mode 4 also enables the CLIP detection ALC, which then allows the gain to be reduced automatically as the supply voltage decreases.

The FSR & FSL input pins are used to set the I2S and PCM interface modes. The table below shows the modes supported.

Table 3 Audio Interface Configurations for the NAU8315

I2S data is 24-bit by default. For the PCM Timeslot interface modes the host can also sent 24 bit or 32 bit data. However, only the 16 MSB bits will be used to process the audio in this mode.

Internal mask options can be used to select other timeslots or 24-bit data or 32-bit PCM data upon special request.

8.2 Outputs

The NAU8315 Mono Class-D PWM Amplifier has a gain range from 3dB to 12dB, and is powered by a separate power supply VDD, which can go up to 5V. This amplifier is capable of delivering up to 3.2W into a 4Ω load with a 5V supply.

8.3 Digital Interfaces

Audio data is passed to the device through a serial data interface compatible with industry standard I2S and PCM devices, using the FSL, FSR, BCLK & DACIN pins. The NAU8315 has no serial interface for control input. Operating modes are defined by the external pin configurations.

8.4 Power Supply

This NAU8315 has been designed to operate reliably under a wide range of power supply conditions and Power-On/Power-Off sequences. However, the Electro Static Detection (ESD) protection diodes between the supplies and the IO pins impact the application of the supplies.

8.5 Power-On-and-Off Reset

The NAU8315 includes a Power-On-and-Off Reset circuit on-chip. The circuit resets the internal logic control at VDD supply power-up and this reset function is automatically generated internally when power supply is too low for reliable operation. Typical reset thresholds are **1.88** V for VDD during a power-on ramp, and **1.61** V for VDD during a power-down ramp. It should be noted that these values are much lower than the required voltage for normal operation of the chip.

The reset is held ON while the power level for VDD is below the threshold. Once the power level rises above the threshold, the reset is released. Once the reset is released, the device will respond to control from external inputs.

An additional internal RC filter-based circuit is added which helps the circuit to respond for fast ramp rates (~3 µsec) and to generate the desired reset period width (~3 µsec at typical corner). This filter is also used to eliminate supply glitches which can generate a false reset condition, typically 50 nsec.

In addition setting the enable pin 'EN' low will reset the internal logic.

8.6 Power Up & Down Sequence

A diagram of the typical power up sequence is shown in the figure below. At first, the power supply is ramped up.

Once the supply is powered up, the enable pin 'EN' can be set high in order to set the device in standby state. Note that the 'EN' pin can also ramp up the same time as the supply voltage. During the standby state the outputs OUTN & OUTP are still off. After enabling VDD & EN , the BCLK detection circuit is activated. External clocks and data can be applied right away if needed. Once the FS & BCLK are applied the clock detection module will validate the BCLK/FS ratio and set the internal clock dividers. When a valid BCLK/FS ratio is detected and the clock dividers are set, a 4 millisecond mute period is enabled during which all circuits are powered up and the DAC digital volume control is in the muted state. The mute period is followed by a soft-unmute, which gradually increases the DAC digital volume to full scale. After this event the signal path is fully active and the outputs are fully enabled. At the end of playback it is recommended to add 2048 zero samples to the DACIN input for a pop-less shutdown. When either one or both of the FS & BCLK clocks is stopped the clock detection circuit will power down the device. The detection time depends on the clock frequency used, but is approximately 50usec. Once detected, the output drivers will shut down.

8.7 Clocking and Sample Rates

The internal clocks for the NAU8315 are derived from the external BCLK clock source. This master system clock can set directly by the BCLK input or it can be generated from a clock multiplier using the BCLK as a reference.

8.7.1 Clock Control and Detection

The NAU8315 includes a Clock Detection circuit that is used to enable and disable the audio paths. The actual power up/down is gated by the clock detection circuit. The block diagram of the clock detection circuit is shown in **[Figure 7](#page-24-3)**.

Figure 7 NAU8315 Clock Detection Circuit

Clock Detection by the NAU8315 uses the BCLK FSL, FSR and EN to control the internal PWRUPEN signal and set the clock divider ratios.

8.7.2 Automatic Power Control and Mute.

Clock detection and automatic power control in the NAU8315 is enabled by meeting two conditions, depending on the configuration. If all conditions are met, the PWRUPEN signal will be asserted to 1. If any of the conditions are not met, the PWRUPEN signal is set to 0.

The conditions for generating the PWRUPEN signal are:

- 1) The NAU8315 has custom logic clock detection circuits that detect if BCLK is present. Upon BCLK detection, the detector output BCLKDET goes to 1. When the BCLK disappears, BCLKDET goes back to 0. Up to 1 µsec is required to detect BCLK and the BCLK release time is about 50 µsec.
- 2) The clock detection logic also needs to detect the ratio BCLK /FS of 32, 50, 64, 100, 125, 128, 200, 250, 256, 400, 500.

The PWRUPEN signal is capable of controlling all the analog power consuming blocks.

A Mode Detection circuit also determines one of the I2S/PCM operating mode and channel (as shown in Table 3) once a valid BCLK/FS ratio is detected.

When PWRUPEN goes high an internal sequence is triggered to bring up analog functions. This includes an analog MUTE to allow stabilization of internal analog blocks, followed by a soft unmute of the DAC. The analog MUTE time is 4ms. The soft unmute then ramps the gain 512 MCLK_SRC periods per gain step. For the 512 setting, the soft unmute takes 256 * 512 * Tmclk_src seconds to reach 0dB (10ms for 12.288MHz MCLK_SRC). This ensures pop free startup of the amplifier. An example of this startup is shown in figure below.

Figure 8 PWRUPEN startup sequence.

Before reaching the DAC the incoming PCM signal is processed by a digital signal path. To ensure complete flushing and transient free audio of this path it is recommended that 2048 zero samples are sent to the device before stopping clocks. The DAC soft unmute function is also beneficial for eliminating any audio transients from audio path

8.7.3 Input Clock Rates

The range of the input clocks is shown in **[Table 4](#page-25-2)**.

Table 4 Range of Input Clocks

8.7.4 Sample and Over Sampling Rates

Possible BCLK/FS ratios are shown in **[Table 5](#page-26-1)** and **[Table 6](#page-26-2)**. Table 4 shows the relation between the BCLK/FS ratio and the internal OSR and MCLK_SRC/FS ratio. The divider and multiplier N1 & N2 are set accordingly by the clock detection logic. Table 5 shows the possible FS & BCLK ranges for each BCLK/FS ratio.

Table 5 BCLK/FS ratios and Over Sampling Rates

Table 6 Ranges of Sampling Frequencies and BCLK Rates

The MCLK_SRC frequency is defined as:

F_MCLK_SRC = N2 x F_BCLK / N1

For BCLK/FS ratios of 32 & 50 a low jitter BCLK source with accurate duty cycle must be used.

8.8 Automatic Level Control

The digital Automatic Level Control (ALC) function supports the DAC digital audio path of the NAU8315. It can be enabled as by setting the GAIN pin to 12dB gain with ALC. This function can be used to manage the gain to optimize the signal level at the output of the Class-D Amplifier by automatically amplifying input signals that are too small or automatically decreasing the amplitude signals that are too loud. The ALC is designed such that it adjusts the output level in order to prevent clipping. This may be use-full in battery operated applications, where the battery supply voltage decreases as the battery discharges. At lower supply voltages the outputs will more likely clip at higher output levels. In such case, the ALC would decrease the output level just below the clipping level and maintain high quality sound as well as decreasing the peak power drain from the battery.

The Figure below illustrates the relationship of the ALC to other major functions of the NAU8315.

Figure 9 ALC Control Loop Block Diagram

8.8.1 ALC Operation

A clip detection signal is provided by the clip detection circuit as soon as the input signal is clipping at its peak levels. The ALC block then ramps down the gain at the pre-programmed ALC Attack Time rate. This continues until the clipping detection no longer detects a clipping signal or until the maximum gain decrement per clipping event is reached. When the clipping is no longer occurring, the ALC gain is held for the hold time. The ALC gain is then ramped up to the target following the preprogrammed ALC Release Time rate

8.8.2 ALC Parameter Definitions

- ALC Minimum Gain (ALCMIN): This sets the minimum allowed gain during all modes of ALC operation. This is useful to keep the ALC operating range close to the desired range for a given application scenario.
- ALC Attack Time (ALCATK): Attack time refers to how quickly a system responds to a clipping event. Typically, attack time is much faster than decay time.
- ALC Decay Time (ALCDCY): Decay time refers to how quickly a system responds after the hold time. Typically, decay time is much slower than attack time. When no more clipping events occur, the gain will increase at a rate determined by this parameter.
- ALC Hold Time (ALCHLD): Hold time refers to the duration of time when no action is taken. This is typically to avoid undesirable sounds that can happen when an ALC responds too quickly to a changing input signal. In the NAU8315, the hold time value is the duration from the last clipping event before there is an actual gain increase during the decay time.
- CLIP_GAINADJUST sets the maximum gain decrease per clipping event. During a clipping even the gain decreases by 0.250dB (1-1/64) per attack time step until the clipping event no longer occurs or the maximum gain reduction limit set in CLIP_GAINADJUST has been reached or the ALC Minimum Gain is reached.

8.9 Device Protection

The NAU8315 includes the following types of device protection:

- Over Current Protection (OCP)
- **Under Voltage Lock Out (UVLO)**
- **D** Over Temperature Protection (OTP)
- Clock Termination Protection (CTP)

Over Current Protection is provided in the NAU8315. If a short circuit is detected on any of the pull-up or pull-down devices on the output drivers for at least 14µs, the output drivers will be disabled for 100ms. The output drivers will then be re-enabled and checked for a short circuit again. If the short circuit is still present for another 14µs, the cycle will repeat until the short circuit has been fixed. The short circuit threshold is set at 2.1A.

Under Voltage Lock Out (UVLO) provides Supply Under Voltage Protection in the NAU8315 If the VDD drops under 2.1V, the output drivers are disabled, however, the NAU8315 control circuitry will still operate. This is useful to help avoid the battery supply voltage dropping before the host processor can safely shutdown the devices on the system. If the VDD drops below 1.61V, the internal power-onreset will activate and put the class-D driver in power down state.

Over Temperature Protection (OTP) is provided in the event of thermal overload. When the device internal junction temperature reaches 143°C, the NAU8315 will disable the output drivers. Once the device cools down to a safe operating temperature (123°C) for at least 100us, the output drivers will be re-enabled.

Clock Termination Protection (CTP) is provided in the NAU8315. If the FS and/or BCLK clock stops running, the NAU8315 automatically shuts down the Class-D driver and therefore prevents DC voltages to remain at the outputs.

8.10 Power-up and Power-Down Control

When the supply voltage ramps up, the internal power on reset circuit is triggered. At this time, all internal circuits will be set to the power-down state. The device can be enabled by setting EN to VDD and starting the clocks. Upon starting the clocks, the device will go through an internal power-up sequence in order to minimize 'pops' on the speaker output. The complete power-up sequence requires about 14 msec. The device will typically power down in about 22 µsec, when the clocks are stopped.

NOTE: It is important to keep the input signal at zero amplitude or enable the mute condition in order to minimize 'pops' when the clocks are stopped.

8.11 Bypass Capacitors

Bypass capacitors are required to remove the AC ripple on the VDD pins. The value of these capacitors depends on the length of the VDD trace. In most cases, $2 \times 4.7 \mu$ F and 0.1 μ F are sufficient to achieve good performance.

8.12 Printed Circuit Board Layout Considerations

Good Printed Circuit Board (PCB) layout and grounding techniques are essential to achieve good audio performance. It is better to use low-resistance traces as these devices are driving low impedance loads. The resistance of the traces has a significant effect on the output power delivered to the load. In order to dissipate more heat, use wide traces for the power and ground lines.

8.12.1 PCB Layout Notes

The Class-D Amplifier is a high power switching circuits that can cause Electro Magnetic Interference (EMI) when poorly connected. Therefore, care must be taken to design the PCB eliminate Electro Magnetic Interference (EMI), reduce IR drops, and maximize heat dissipation.

The following notes are provided to assist product design and enhance product performance:

- Use a VSS plane, preferably on both sides, to shield clocks and reduce EMI
- **Maximize the copper to the VSS pins and have solid connections to the plane**
- **Planes on VDD are optional**
- The VDD connection needs to be a solid piece of copper
- \blacksquare Use thick copper options on the supply layers if cost permits
- Keep the speaker connections short and thick. Do not use VIAs
- Use a small speaker connector like a wire terminal block (Phoenix Contact)
- For better heat dissipation, use VIAs to conduct heat to the other side of the PCB
- Do not use VIA's to connect OUTP & OUTN. Use a direct top layer copper connection to the pins. Thick copper is preferred.
- **Use large or multiple parallel VIAs to decoupling capacitors when connecting to a ground plane**
- \blacksquare The digital IO lines can be shielded between power planes

8.13 Filters

The NAU8315 is designed for use without any filter on the output line. However, the NAU8315 may be used with or without various types of filters, depending on the needs of the application.

8.13.1 Class D without Filters

The NAU8315 is designed for use without any filter on the output line. That means the outputs can be directly connected to the speaker in the simplest configuration. This type of filter-less design is suitable for portable applications where the speaker is very close to the amplifier. In other words, this is preferable in applications where the length of the traces between the speaker and amplifier is short. **[Figure 10](#page-31-4)** illustrates this simple configuration.

Figure 10 NAU8315 Speaker Connections without Filter

8.13.2 Class D with Filters

In some applications, shorter trace lengths are not possible because of speaker size limitations and other layout reasons. In these applications, long traces will cause EMI issues. Several types of filter circuits are available to reduce the EMI effects. These are Ferrite Bead Filters, LC filters, Low-Pass LCR Filters, and High-Pass Filters.

Ferrite Bead Filters are used to reduce high-frequency emissions. The characteristic of a Ferrite Bead Filter is such that it offers higher impedance at high frequencies. For better EMI performance, select a Ferrite Bead Filter which offers the highest impedance at high frequencies, so that it will attenuate the signals at higher frequencies. The typical circuit diagram using a Ferrite Bead Filter for each output to the speaker is shown **[Figure 11](#page-32-0)**.

NOTE: Usually, the ferrite beads have low impedance in the audio range, so they will act as passthrough filters in the audio frequency range.

Figure 11 NAU8315 Speaker Connections with Ferrite Bead Filters

LC Filters are used to suppress low-frequency emissions. The diagram in **[Figure 12](#page-32-1)** shows the NAU8315 outputs connected to the speaker with an LC Filter circuit. R^L is the resistance of the speaker coil.

Figure 12 NAU8315 Speaker Connections with LC Filters

Low-Pass LCR Filters may also be useful in some applications where long traces or wires to the speakers are used. **[Figure 13](#page-32-2)** shows the speaker connections using standard Low-Pass LCR Filters.

Figure 13 NAU8315 Speaker Connections with Low-Pass Filters

The following equations apply for critically damped (ζ = 0.707) standard Low-Pass LCR Filters:

$$
2\pi f c = \frac{1}{\sqrt{(LC)}} \qquad fc \text{ is the cut-off frequency}
$$

$$
\zeta = 0.707 = \frac{1}{2R} * \sqrt{\frac{L}{C}}
$$

NOTE: The L and C values for differential configuration can be calculated by duplicating the singleended configuration values and substituting RL = 2R.

9 Control

The NAU8315 Audio Interface is set to default I2S and PCM time slot modes as described in the FSL & FSR operating mode table. Other modes may be feasible through metal mask option changes upon special request.

9.1 Digital Audio Interface

The NAU8315 is an I2S or PCM Timeslot slave device. In I2S Slave Mode, an external controller supplies BCLK (bit clock) and the frame synchronization or FS signal. Data is latched on the rising edge of BCLK.

The NAU8315 reads 24 bit I2S data on DACIN. For the BCLK/FS rate of 32, only the 16 MSB bits are read.

9.1.1 I2S Audio Data

In I2S Mode, the MSB is clocked on the second BCLK rising edge after the FS transitions. When FS is LOW, Left Channel data is received; when FS is HIGH, Right Channel data is received. This can be seen in **[Figure 14.](#page-34-4)**

Figure 14 I2S Audio Data

9.1.2 PCM Time Slot Audio Data

PCM Time Slot Mode is used to delay the time at which the DAC data is clocked into the device. This can be useful when multiple NAU8315 chips or other devices share the same audio bus. This will allow the audio from the chips to be delayed around each other without interference.

Normally, the DAC data is clocked immediately after the Frame Sync (FS); however, in PCM Time Slot Mode, the audio data can be delayed. These delays can be seen before the MSB in **[Figure 15](#page-35-3)**.

9.2 Digital Audio Interface Timing Diagrams

9.2.1 I2S Audio Interface

9.2.2 PCM Audio

Figure 17 PCM Audio Interface

Package Specification

The NAU8315 Mono Class-D Amplifier is available in a small, 20 pin QFN package, using 0.5 mm pitch, as shown below.

NAU8315 20 pin QFN Package Specification

The NAU8315 Mono Class-D Amplifier is also available in a small, 12 Ball WLCSP package, using 0.4 mm pitch, as shown below.

NAU8315 12 Ball WLCSP Package Specification

The NAU8315 Mono Class-D Amplifier is also available in a small, 9 Ball WLCSP package, using 0.4 mm pitch, as shown below.

NAU8315 9 Ball WLCSP Package Specification

SYMBOL

 \overline{A}

A1

 $A2$

 $A3$

 $\overline{\mathsf{D}}$

SE

 \overline{E}

D1

 \bullet

 $\mathsf b$

 $\mathsf n$

aaa

bbb

 $_{\rm ccc}$

ddd

 $\overline{\mathbf{x}}$ $\overline{\mathsf{E}}$

Υ

 $\pmb{\times}$

 $\overline{\mathbf{y}}$ SD

 $\pmb{\times}$

 $\overline{\mathbf{y}}$

 MIN NOM MAX

 0.517 0.575 0.633

 0.17 \overline{a}

 0.325 0.35 0.375

 0.022 0.025 0.028

 1.18

1.95

 $---$

 $---$

 0.8

 $0.8\,$

 0.4

 0.24 $\overline{}$

 0.25

 $\overline{}$

 0.03

 0.06

 0.05

 0.015

 0.23

BSC

BSC

 $_{\rm BSC}$

BSC

BSC

 0.3

11 Ordering Information

12 Revision History

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.