onsemi

Dual NPN Bias Resistor Transistors

 $\mathbf{R1} = \mathbf{47} \ \mathbf{k}\Omega, \ \mathbf{R2} = \mathbf{47} \ \mathbf{k}\Omega$

NPN Transistors with Monolithic Bias Resistor Network

MUN5213DW1, NSBC144EDXV6, NSBC144EDP6

This series of digital transistors is designed to replace a single device and its external resistor bias network. The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. The BRT eliminates these individual components by integrating them into a single device. The use of a BRT can reduce both system cost and board space.

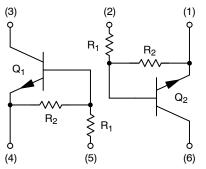
Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable*
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

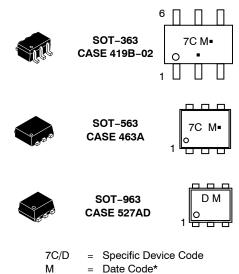
MAXIMUM RATINGS

(T_A = 25°C, common for Q₁ and Q₂, unless otherwise noted)

Rating	Symbol	Max	Unit
Collector-Base Voltage	V _{CBO}	50	Vdc
Collector-Emitter Voltage	V _{CEO}	50	Vdc
Collector Current – Continuous	Ι _C	100	mAdc
Input Forward Voltage	V _{IN(fwd)}	40	Vdc
Input Reverse Voltage	V _{IN(rev)}	10	Vdc


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ORDERING INFORMATION


Device	Package	Shipping [†]
MUN5213DW1T1G, SMUN5213DW1T1G*	SOT-363	3,000 / Tape & Reel
MUN5213DW1T3G, NSVMUN5213DW1T3G*	SOT-363	10,000 / Tape & Reel
NSBC144EDXV6T1G, NSVBC144EDXV6T1G*	SOT-563	4,000 / Tape & Reel
NSBC144EDP6T5G	SOT-963	8,000 / Tape & Reel

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PIN CONNECTIONS

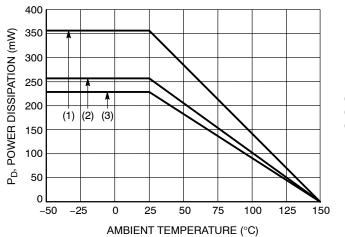
MARKING DIAGRAMS

= Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation may vary depending upon manufacturing location.

THERMAL CHARACTERISTICS

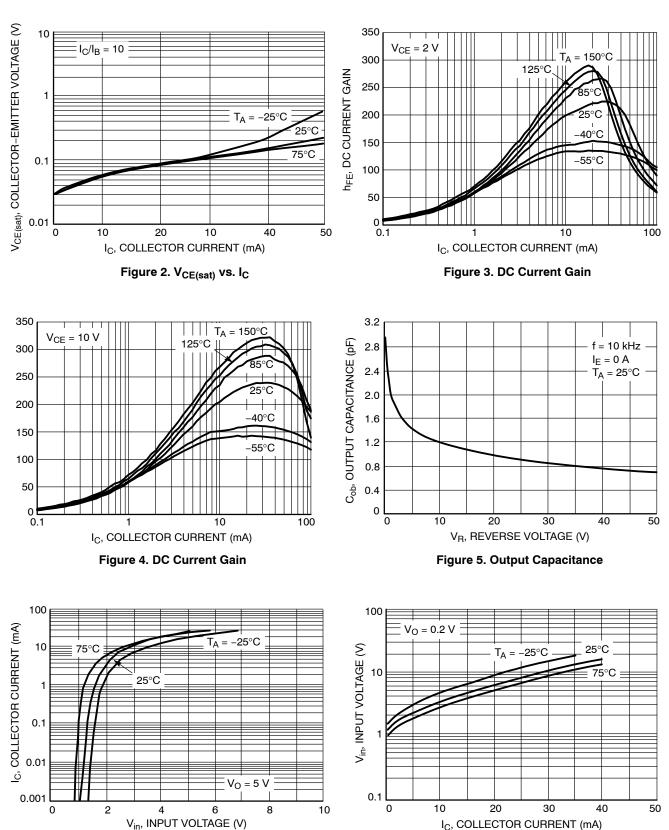

	Characteristic	Symbol	Max	Unit
MUN5213DW1 (SOT-363) ON	E JUNCTION HEATED			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 1) (Note 2) Derate above 25^{C} (Note 2)	(Note 1)	PD	187 256 1.5 2.0	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1) (Note 2)	R _{0JA}	670 490	°C/W
MUN5213DW1 (SOT-363) BC	TH JUNCTION HEATED (Note 3)	·		
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 1) (Note 2) Derate above 25^{C} (Note 2)	(Note 1)	PD	250 385 2.0 3.0	mW mW/°C
Thermal Resistance, Junction to Ambient (Note 2)	(Note 1)	R _{θJA}	493 325	°C/W
Thermal Resistance, Junction to Lead (Note 1) (Note 2)		R _{θJL}	188 208	°C/W
Junction and Storage Temper	ature Range	T _J , T _{stg}	-55 to +150	°C
NSBC144EDXV6 (SOT-563)	ONE JUNCTION HEATED			
$\begin{array}{l} \mbox{Total Device Dissipation} \\ T_A = 25^\circ C \qquad (Note 1) \\ \mbox{Derate above } 25^\circ C \end{array}$	(Note 1)	P _D	357 2.9	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1)	R _{0JA}	350	°C/W
NSBC144EDXV6 (SOT-563)	BOTH JUNCTION HEATED (Note 3)			
$\begin{array}{l} \mbox{Total Device Dissipation} \\ T_A = 25^\circ C & (Note 1) \\ \mbox{Derate above } 25^\circ C \end{array}$	(Note 1)	P _D	500 4.0	mW mW/°C
Thermal Resistance, Junction to Ambient	(Note 1)	R _{θJA}	250	°C/W
Junction and Storage Temper	ature Range	T _J , T _{stg}	–55 to +150	°C
NSBC144EDP6 (SOT-963) O	NE JUNCTION HEATED			
Total Device Dissipation $T_A = 25^{\circ}C$ (Note 4) (Note 5) Derate above 25^{C} (Note 5)	(Note 4)	PD	231 269 1.9 2.2	MW mW/°C
Thermal Resistance, Junction to Ambient (Note 5)	(Note 4)	$R_{ heta JA}$	540 464	°C/W
NSBC144EDP6 (SOT-963) B	OTH JUNCTION HEATED (Note 3)	·		
$\begin{array}{l} \mbox{Total Device Dissipation} \\ T_A = 25^\circ C \qquad (Note 4) \\ (Note 5) \\ \mbox{Derate above } 25^\circ C \\ (Note 5) \end{array}$	(Note 4)	PD	339 408 2.7 3.3	MW mW/°C
Thermal Resistance, Junction to Ambient (Note 5)	(Note 4)	R _{0JA}	369 306	°C/W
		1	1	

FR-4 @ 1.0 × 1.0 Inch Pad.
FR-4 @ 1.0 × 1.0 Inch Pad.
Both junction heated values assume total power is sum of two equally powered channels.
FR-4 @ 100 mm², 1 oz. copper traces, still air.
FR-4 @ 500 mm², 1 oz. copper traces, still air.

Characteristic	Symbol	Min	Тур	Мах	Unit
OFF CHARACTERISTICS					
Collector-Base Cutoff Current $(V_{CB} = 50 \text{ V}, I_E = 0)$	I _{CBO}	-	-	100	nAdc
Collector-Emitter Cutoff Current $(V_{CE} = 50 \text{ V}, I_B = 0)$	I _{CEO}	-	-	500	nAdc
Emitter-Base Cutoff Current $(V_{EB} = 6.0 \text{ V}, I_C = 0)$	I _{EBO}	-	-	0.1	mAdc
Collector-Base Breakdown Voltage $(I_C = 10 \ \mu A, I_E = 0)$	V _{(BR)CBO}	50	-	-	Vdc
Collector-Emitter Breakdown Voltage (Note 6) $(I_C = 2.0 \text{ mA}, I_B = 0)$	V _{(BR)CEO}	50	-	_	Vdc
ON CHARACTERISTICS					
DC Current Gain (Note 6) ($I_C = 5.0 \text{ mA}, V_{CE} = 10 \text{ V}$)	h _{FE}	80	140	-	
Collector-Emitter Saturation Voltage (Note 6) $(I_{C} = 10 \text{ mA}, I_{B} = 0.3 \text{ mA})$	V _{CE(sat)}	-	-	0.25	V
Input Voltage (Off) (V _{CE} = 5.0 V, I _C = 100 μA)	V _{i(off)}	-	1.2	-	Vdc
Input Voltage (On) (V _{CE} = 0.2 V, I _C = 3.0 mA)	V _{i(on)}	_	1.9	-	Vdc
Output Voltage (On) (V_{CC} = 5.0 V, V_B = 3.5 V, R_L = 1.0 k Ω)	V _{OL}	-	-	0.2	Vdc
Output Voltage (Off) (V_{CC} = 5.0 V, V_B = 0.5 V, R_L = 1.0 k Ω)	V _{OH}	4.9	-	_	Vdc
Input Resistor	R1	32.9	47	61.1	kΩ
Resistor Ratio	R ₁ /R ₂	0.8	1.0	1.2	

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$, common for Q_1 and Q_2 , unless otherwise noted)

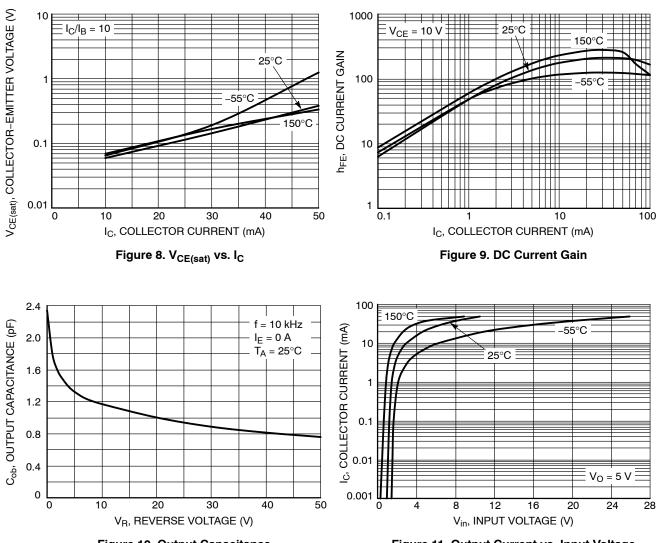
6. Pulsed Condition: Pulse Width = 300 ms, Duty Cycle \leq 2%.



(1) SOT-363; 1.0 × 1.0 Inch Pad

(2) SOT-563; Minimum Pad

(3) SOT-963; 100 mm², 1 oz. Copper Trace


Figure 1. Derating Curve

TYPICAL CHARACTERISTICS MUN5213DW1, NSBC144EDXV6

TYPICAL CHARACTERISTICS NSBC144EDP6

Figure 11. Output Current vs. Input Voltage

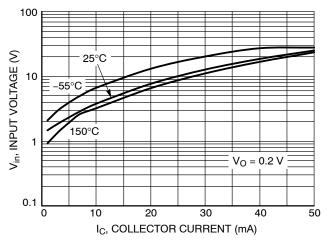
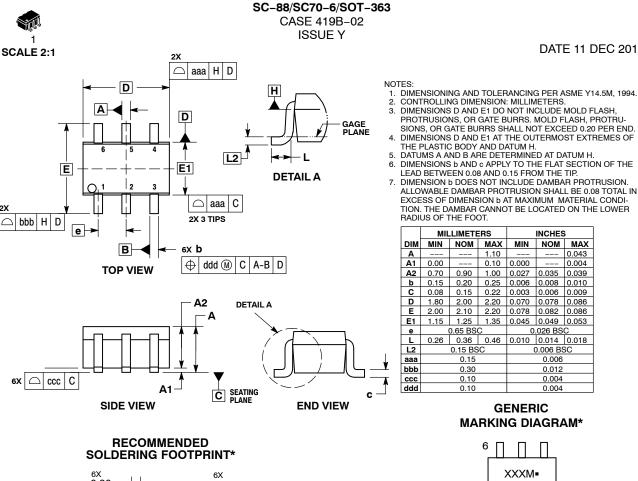



Figure 12. Input Voltage vs. Output Current

DOSEM

DATE 11 DEC 2012

6X 0.30 -0.66 2 50 0.65 PITCH DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

- CONTROLLING DIMENSION: MILLIMETERS. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRU-SIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. DATUMS A AND B ARE DETERMINED AT DATUM H. DIMENSIONS b AND ¢ APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. DIMENSION b DOCE NOT INCLUDE DAMAGE PROTEINSION

- DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDI-TION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MIL	LIMETE	RS		INCHES	3
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α			1.10			0.043
A1	0.00		0.10	0.000		0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.15	0.20	0.25	0.006	0.008	0.010
С	0.08	0.15	0.22	0.003	0.006	0.009
D	1.80	2.00	2.20	0.070	0.078	0.086
Е	2.00	2.10	2.20	0.078	0.082	0.086
E1	1.15	1.25	1.35	0.045	0.049	0.053
е	(0.65 BS	С	0	.026 BS	С
L	0.26	0.36	0.46	0.010	0.014	0.018
L2		0.15 BS	C	(0.006 BS	SC
aaa		0.15			0.006	
bbb		0.30			0.012	
ccc		0.10			0.004	
ddd		0.10			0.004	

GENERIC **MARKING DIAGRAM***

XXX = Specific Device Code

- = Date Code* М
- = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

STYLES ON PAGE 2

Electronic versions are uncontrolled except when accessed directly from the Document Repository. DOCUMENT NUMBER: 98ASB42985B Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SC-88/SC70-6/SOT-363 PAGE 1 OF 2 onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SC-88/SC70-6/SOT-363 CASE 419B-02 ISSUE Y

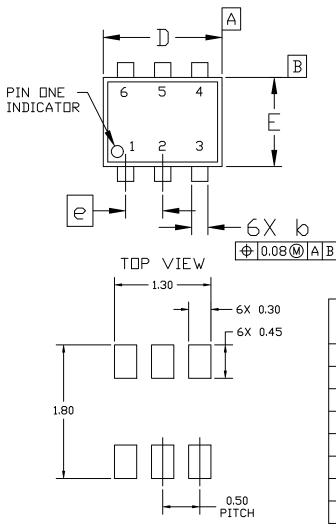
DATE 11 DEC 2012

STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N/C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2	STYLE 8: CANCELLED	STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2	STYLE 10: PIN 1. SOURCE 2 2. SOURCE 1 3. GATE 1 4. DRAIN 1 5. DRAIN 2 6. GATE 2	STYLE 11: PIN 1. CATHODE 2 2. CATHODE 2 3. ANODE 1 4. CATHODE 1 5. CATHODE 1 6. ANODE 2	STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2
STYLE 13:	STYLE 14:	STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE	PIN 1. VREF	PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. N/C	2. GND	2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. COLLECTOR	3. GND	3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. EMITTER	4. IOUT	4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. BASE	5. VEN	5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE	6. VCC	6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 19:	STYLE 20:	STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. I OUT	PIN 1. COLLECTOR	PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. GND	2. COLLECTOR	2. N/C	2. GND	2. CH1	2. ANODE
3. GND	3. BASE	3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. V CC	4. EMITTER	4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. V EN	5. COLLECTOR	5. N/C	5. VBUS	5. CH2	5. CATHODE
6. V REF	6. COLLECTOR	6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 25:	STYLE 26:	STYLE 27:	STYLE 28:	STYLE 29:	STYLE 30:
PIN 1. BASE 1	PIN 1. SOURCE 1	PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. CATHODE	2. GATE 1	2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 2	3. DRAIN 2	3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. BASE 2	4. SOURCE 2	4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER	5. GATE 2	5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 1	6. DRAIN 1	6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED "	
DESCRIPTION:	SC-88/SC70-6/SOT-363		PAGE 2 OF 2
		LLC dba onsemi or its subsidiaries in the United States and/or other cour	

the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.



SOT-563, 6 LEAD CASE 463A ISSUE H

DATE 26 JAN 2021

- NDTES: DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 1. CONTROLLING DIMENSION: MILLIMETERS 2.
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH З. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS. THICKNESS OF BASE MATERIAL.

RECOMMENDED MOUNTING FOOTPRINT* For additional information on our Pb-Free ж strategy and soldering details, please download

the DN Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

A- -	-	-	6X	l
		I	' H _E	
		⊂		

SIDE VIEW

	MI	LLIMETE	RS
DIM	MIN.	NDM.	MAX.
А	0.50	0.55	0.60
b	0.17	0.22	0.27
С	0.08	0.13	0.18
D	1.50	1.60	1.70
E	1.10	1.20	1.30
е	l	0.50 BSC	
L	0.10	0.20	0.30
Η _Ε	1.50	1.60	1.70

Electronic versions are uncontrolled except when accessed directly from the Document Repository. **DOCUMENT NUMBER:** 98AON11126D Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red. **DESCRIPTION:** SOT-563, 6 LEAD PAGE 1 OF 2

ON Semiconductor and 💷 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

STYLE 1:	STYLE 2:	STYLE 3:
PIN 1. EMITTER 1	PIN 1. EMITTER 1	PIN 1. CATHIDE 1
2. BASE 1	2. EMITTER 2	2. CATHIDE 1
3. COLLECTOR 2	3. BASE 2	3. ANUDE/ANUDE 2
4. EMITTER 2	4. COLLECTOR 2	4. CATHIDE 2
5. BASE 2	5. BASE 1	5. CATHIDE 2
6. COLLECTOR 1	6. COLLECTOR 1	6. ANUDE/ANUDE 1
STYLE 4:	STYLE 5:	STYLE 6;
PIN 1. COLLECTOR	PIN 1. CATHEDE	PIN 1. CATHODE
2. COLLECTOR	2. CATHEDE	2. ANODE
3. BASE	3. ANEDE	3. CATHODE
4. EMITTER	4. ANEDE	4. CATHODE
5. COLLECTOR	5. CATHEDE	5. CATHODE
6. COLLECTOR	6. CATHEDE	6. CATHODE
STYLE 7:	STYLE 8:	STYLE 9:
PIN 1. CATHEDE	PIN 1. DRAIN	PIN 1. SDURCE 1
2. ANEDE	2. DRAIN	2. GATE 1
3. CATHEDE	3. GATE	3. DRAIN 2
4. CATHEDE	4. SDURCE	4. SDURCE 2
5. ANEDE	5. DRAIN	5. GATE 2
6. CATHEDE	6. DRAIN	6. DRAIN 1
STYLE 10: PIN 1. CATHEDE 1 2. N/C 3. CATHEDE 2 4. ANEDE 2 5. N/C	STYLE 11: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1	

5. BASE 1 6. COLLECTOR 2

6. ANDDE 1

DATE 26 JAN 2021

GENERIC **MARKING DIAGRAM***

XX = Specific Device Code

M = Month Code

. = Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON11126D	Electronic versions are uncontrolled except when accessed directly from Printed versions are uncontrolled except when stamped "CONTROLLED (
DESCRIPTION:	SOT-563, 6 LEAD		PAGE 2 OF 2

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

PAGE 1 OF 1
Semiconductor or its subsidiaries in the United States and/or other countries. N Semiconductor makes no warranty, representation or guarantee regarding

© Semiconductor Components Industries, LLC, 2019

rights of others.

www.onsemi.com

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales