

ULTRA MOBILE PC CLOCK FOR EMBEDDED APPLICATIONS

ICS9EMS9633

Recommended Application:

Poulsbo Based Ultra-Mobile PC (UMPC) for Embedded Applications

Output Features:

- 3 CPU low power differential push-pull pairs
- 3 SRC low power differential push-pull pairs
- 1 LCD100 SSCD low power differential push-pull pair
- 1 DOT96 low power differential push-pull pair
- 1 REF, 14.31818MHz, 3.3V SE output

Features/Benefits:

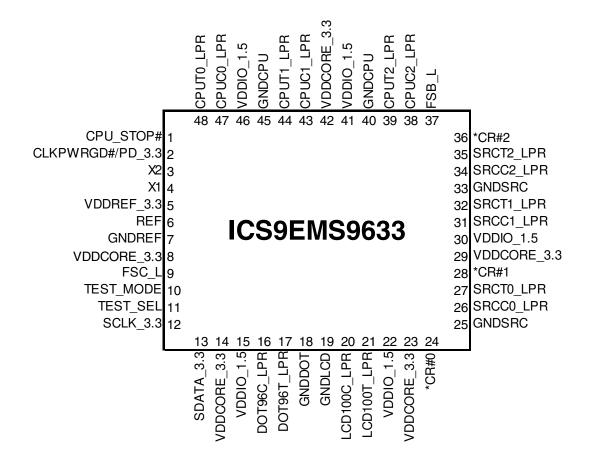
- Industrial temperature range compliant
- Supports ULV CPUs with 67 to 167 MHz CPU outputs
- Dedicated TEST/SEL and TEST/MODE pins saves isolation resistors on pins
- CPU STOP# input for power manangment
- Fully integrated Vreg
- Integrated series resistors on differential outputs
- 1.5V VDD IO operation, 3.3V VDD core and REF supply pin for REF
- -40 to +85C operating range

SSOP Pin Configuration

REF GNDREF VDDCORE_3.3 FSC_L TEST_MODE TEST_SEL SCLK SDATA VDDCORE_3.3 VDDIO_1.5 DOT96C_LPR DOT96T_LPR GNDDOT GNDLCD LCD100C_LPR LCD100T_LPR VDDIO_1.5 VDDCORE_3.3 *CR#0 GNDSRC SRCCO_LPR SRCTO_LPR	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	47 46 45 44 43 42 41 40 39 38 37 36 35 31 33 32 31 30 29 28	VDDREF_3.3 X1 X2 CLKPWRGD#/PD_3.3 CPU_STOP# CPUT0_LPR CPUC0_LPR VDDIO_1.5 GNDCPU CPUT1_LPR VDDCORE_3.3 VDDIO_1.5 GNDCPU CPUT2_LPR CPUC2_LPR FSB_L *CR#2 SRCT2_LPR GNDSRC SRCT1_LPR
SRCC0_LPR	21		
SRCT0_LPR	22	27	SRCT1_LPR
*CR#1			SRCC1_LPR
VDDCORE_3.3	24	25	VDDIO_1.5

48 SSOP Package

^{*} indicates inputs with internal pull up of ~10Kohm to 3.3V


SSOP Pin Description

	PIN NAME	TYPE	DESCRIPTION		
3 VD	EF	OUT	14.318 MHz reference clock.		
	NDREF	PWR	Ground pin for the REF outputs.		
4 FS	DDCORE_3.3	PWR	3.3V power for the PLL core		
+ 3	SC I	IN	Low threshold input for CPU frequency selection. Refer to input electrical		
	JO_L	IIN	characteristics for Vil_FS and Vih_FS values.		
5 TE	EST_MODE	IN	TEST_MODE is a real time input to select between Hi-Z and REF/N divider mode		
J	-01_WOBE		while in test mode. Refer to Test Clarification Table.		
			TEST_SEL: latched input to select TEST MODE		
6 TE	EST_SEL	IN	1 = All outputs are tri-stated for test		
			0 = All outputs behave normally.		
	CLK	IN	Clock pin of SMBus circuitry, 5V tolerant.		
8 SD	DATA	I/O	Data pin for SMBus circuitry, 3.3V tolerant.		
	DDCORE_3.3		3.3V power for the PLL core		
10 VD	DDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.		
11 00	11 DOT96C_LPR OL		OT96C LPR OUT	OUT	Complement clock of low power differential pair for 96.00MHz DOT clock. No 50ohm
11 DC			resistor to GND needed. No Rs needed.		
12 DC	OOT96T_LPR OUT		True clock of low power differential pair for 96.00MHz DOT clock. No 50ohm resistor		
12 00	31301_Li 11	001	to GND needed. No Rs needed.		
13 GN	NDDOT	PWR	Ground pin for DOT clock output		
14 GN	NDLCD	PWR	Ground pin for LCD clock output		
15 LC	CD100C_LPR	OUT	Complement clock of low power differential pair for LCD100 SS clock. No 50ohm		
10 10	7D 1000_EI 11		resistor to GND needed. No Rs needed.		
16 LC	D100T_LPR	OUT	True clock of low power differential pair for LCD100 SS clock. No 50ohm resistor to		
			GND needed. No Rs needed.		
	DDIO_1.5		Power supply for low power differential outputs, nominal 1.5V.		
	DDCORE_3.3		3.3V power for the PLL core		
	R#0	IN	Clock request for SRC0, 0 = enable, 1 = disable		
20 GN	NDSRC	PWR	Ground pin for the SRC outputs		
21 SR	RCC0_LPR	OUT	Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm		
21 31	IOOU_LI II	001	series resistor. No 50ohm resistor to GND needed.		
22 SR	RCT0_LPR	OUT	True clock of differential 0.8V push-pull SRC output with integrated 33ohm series		
22 31	IOTO_LI II	501	resistor. No 50ohm resistor to GND needed.		
	R#1	IN	Clock request for SRC1, 0 = enable, 1 = disable		
24 VD	DDCORE_3.3	PWR	3.3V power for the PLL core		

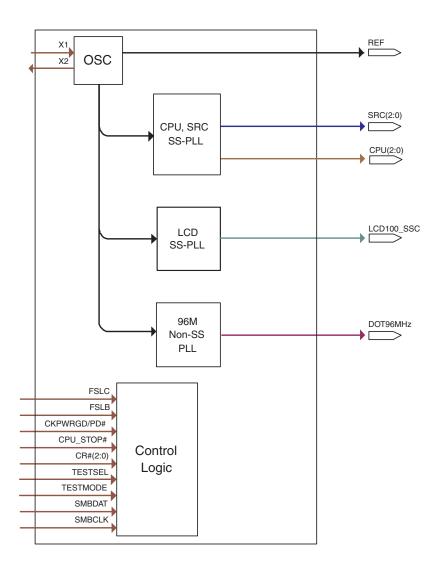
SSOP Pin Description (continued)

Series resistor. No 50ohm resistor to GND needed. True clock of differential 0.8V push-pull SRC output with integrated 33ohm series resistor. No 50ohm resistor to GND needed. SRCC2_LPR OUT SRCC2_LPR OUT OUT OUT OUT OUT OUT OUT OU	PIN#	PIN NAME	TYPE	DESCRIPTION
Series resistor. No 50ohm resistor to GND needed. True clock of differential 0.8V push-pull SRC output with integrated 33ohm series resistor. No 50ohm resistor to GND needed. SRCC2_LPR OUT SRCC2_LPR OUT OUT OUT OUT OUT OUT OUT OU	25	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
senes resistor. No 500hm resistor to GND needed. 27 SRCT1_LPR OUT True clock of differential 0.8V push-pull SRC output with integrated 330hm series resistor. No 500hm resistor to GND needed. 28 GNDSRC PWR Ground pin for the SRC outputs OUT SRCC2_LPR OUT OUT Complementary clock of differential 0.8V push-pull SRC output with integrated 330hm series resistor. No 500hm resistor to GND needed. True clock of differential 0.8V push-pull SRC output with integrated 330hm series resistor. No 500hm resistor to GND needed. True clock of differential 0.8V push-pull SRC output with integrated 330hm series resistor. No 500hm resistor to GND needed. SRCT2_LPR OUT Clock request for SRC2, 0 = enable, 1 = disable Low threshold input for CPU frequency selection. Refer to input electrical characteristics for Vil. FS and Vil. FS values. CPUC2_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. PWR OUT Ground pin for the CPU outputs ADDIO_1.5 PWR PWR Power supply for low power differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. CPUC1_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differe	26	SPCC1 LBB		Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm
28 GNDSRC PWR Ground pin for the SRC outputs 29 SRCC2_LPR OUT Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm series resistor. No 50ohm resistor to GND needed. 30 SRCT2_LPR OUT Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm series resistor. No 50ohm resistor to GND needed. 31 'CR#2 IN Clock request for SRC2, 0 = enable, 1 = disable 32 FSB_L IN Clock request for SRC2, 0 = enable, 1 = disable 33 CPUC2_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 34 CPUT2_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 35 GNDCPU PWR Ground pin for the CPU outputs 36 GNDCPU PWR Ground pin for the CPU outputs 37 VDDCORE_3.3 PWR 3.9 yower for the PLL core 38 CPUC1_LPR OUT Complementary clock of differential outputs, nominal 1.5V. 39 CPUC1_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 39 CPUC1_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 40 GNDCPU PWR Ground pin for the CPU outputs 41 VDDIO_1.5 PWR Ground pin for the CPU outputs 42 CPUC0_LPR OUT Ground pin for the CPU outputs 43 CPUT0_LPR OUT Ground pin for the CPU outputs 44 CPU_STOP# IN Stops all CPU clocks, except those set to GND needed. 45 CLKPWRGD#/PD_3.3 IN series resistor. No 50 ohm resistor to GND needed. 46 K2 OUT Crystal output, Nominally 14.318MHz.	20	ShCC1_LFh	5	series resistor. No 50ohm resistor to GND needed.
resistor. No 500nm resistor to GND needed. RODER ROCC2_LPR OUT SRCC2_LPR OUT True clock of differential 0.8V push-pull SRC output with integrated 33ohm series resistor. No 500hm resistor to GND needed. True clock of differential 0.8V push-pull SRC output with integrated 33ohm series resistor. No 500hm resistor to GND needed. IN Clock request for SRC2_0 = enable, 1 = disable Low threshold input for CPU frequency selection. Refer to input electrical characteristics for Vil_FS and Vih_FS values. CPUC2_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUT2_LPR OUT Ground pin for the CPU outputs OUT OUT OUT OUT OUT OUT OUT OU	07	CDCT1 LDD	OLIT	True clock of differential 0.8V push-pull SRC output with integrated 33ohm series
29 SRCC2_LPR OUT Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm series resistor. No 50ohm resistor to GND needed. True clock of differential 0.8V push-pull SRC output with integrated 33ohm series resistor. No 50ohm resistor to GND needed. True clock of differential 0.8V push-pull SRC output with integrated 33ohm series resistor. No 50ohm resistor to GND needed. IN Clock request for SRC2, 0 = enable, 1 = disable Low threshold input for CPU frequency selection. Refer to input electrical characteristics for VII_FS and VII_FS values. CPUC2_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUT2_LPR OUT Ground pin for the CPU outputs GNDCPU PWR Ground pin for the CPU outputs VDDICORE_3.3 PWR 3.9V power for the PLL core COmplementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUT1_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUT1_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUT0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUC0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differe	21	SRCTI_LPR	001	resistor. No 50ohm resistor to GND needed.
series resistor. No 50ohm resistor to GND needed. True clock of differential 0.8V push-pull SRC output with integrated 33ohm series resistor. No 50ohm resistor to GND needed. IN Clock request for SRC2, 0 = enable, 1 = disable Clock request for SRC2, 0 = enable, 1 = disable Low threshold input for CPU frequency selection. Refer to input electrical characteristics for Vil_FS and Vih_FS values. CPUC2_LPR OUT 33 CPUC2_LPR OUT 34 CPUT2_LPR OUT 35 GNDCPU PWR Ground pin for the CPU outputs 36 VDDIO_1.5 PWR Power supply for low power differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 37 VDDCORE 3.3 CPUC1_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. GNDCPU PWR Ground pin for the CPU outputs CPUT0_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUT0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs	28	GNDSRC	PWR	Ground pin for the SRC outputs
series resistor. No 500hm resistor to GND needed. True clock of differential 0.8V push-pull SRC output with integrated 330hm series resistor. No 500hm resistor to GND needed. IN Clock request for SRC2, 0 = enable, 1 = disable Low threshold input for CPU frequency selection. Refer to input electrical characteristics for VII_FS and VII_FS values. CPUC2_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. CPUT2_LPR OUT GROUND PWR Ground pin for the CPU outputs WDDIO_1.5 PWR Power supply for low power differential outputs, nominal 1.5V. PODEORE_3.3 CPUC1_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. CPUC1_LPR OUT Complementary clock of differential outputs, nominal 1.5V. PODEORE_3.3 PWR 3.9V power for the PLL core Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. CPUC1_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. CPUC0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. CPUC0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. N	20	SBCC2 LBB	OUT	Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm
resistor. No 500hm resistor to GND needed. IN Clock request for SRC2, 0 = enable, 1 = disable Low threshold input for CPU frequency selection. Refer to input electrical characteristics for Vil_FS and Vih_FS values. CPUC2_LPR OUT CPUT2_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential outputs, nominal 1.5V. PWR Power supply for low power differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. CPUC1_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. CPUT1_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. CPUT1_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. CPUC0_LPR OUT Complementary clock of differential outputs, nominal 1.5V. CPUC0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 330hm series resistor. No 50 ohm resistor	29	SRCC2_LPR	001	series resistor. No 50ohm resistor to GND needed.
resistor. No 50ohm resistor to GND needed. IN Clock request for SRC2, 0 = enable, 1 = disable Low threshold input for CPU frequency selection. Refer to input electrical characteristics for Vil_FS and Vih_FS values. CPUC2_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. PWR Ground pin for the CPU outputs ROPUC1_LPR OUT Complementary clock of differential outputs, nominal 1.5V. CPUC1_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUT1_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUC0_LPR OUT Complementary clock of differential outputs, nominal 1.5V. CPUC0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series re	20	CDCT0 LDD	OLIT	True clock of differential 0.8V push-pull SRC output with integrated 33ohm series
SSB_L	30	SRC12_LPR	001	
CPUC2_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. PWR Ground pin for the CPU outputs CPUC1_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUT1_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUC0_LPR OUT Complementary clock of differential outputs, nominal 1.5V. CPUC0_LPR OUT Complementary clock of differential outputs, nominal 1.5V. CPUC0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUC0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPU_STOP# IN Stops all CPU clocks, except those set to be free running clocks This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state.	31	*CR#2	IN	Clock request for SRC2, 0 = enable, 1 = disable
CPUC2_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. PWR Ground pin for the CPU outputs CPUC1_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUT1_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUC0_LPR OUT Complementary clock of differential outputs, nominal 1.5V. CPUC0_LPR OUT Complementary clock of differential outputs, nominal 1.5V. CPUC0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUC0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPU_STOP# IN Stops all CPU clocks, except those set to be free running clocks This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state.	-00	FOD 1	18.1	Low threshold input for CPU frequency selection. Refer to input electrical
CPUC2_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. SERIE CPUC1_LPR OUT Ground pin for the CPU outputs OUT Complementary clock of differential outputs, nominal 1.5V. PWR Power supply for low power differential outputs, nominal 1.5V. OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. OUT Ground pin for the CPU outputs PWR Power supply for low power differential outputs, nominal 1.5V. CPUC0_LPR OUT CPUC0_LPR OUT COMPLEMENTARY Clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUT0_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUT0_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. IN Stops all CPU clocks, except those set to be free running clocks This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state. 46 X2 OUT Crystal output, Nominally 14.318MHz.	32	FSB_L	IIN	
33 CPUC2_LPR 34 CPUT2_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 35 GNDCPU PWR Ground pin for the CPU outputs 36 VDDIO_1.5 PWR Power supply for low power differential outputs, nominal 1.5V. 37 VDDCORE_3.3 PWR 3.3V power for the PLL core Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 39 CPUT1_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 40 GNDCPU PWR Ground pin for the CPU outputs 41 VDDIO_1.5 PWR Power supply for low power differential outputs, nominal 1.5V. CPUC0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUT0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. CPUT0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. Thue clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. Thue clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. Thue clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. Thue clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. Thue cl		001100 100	O. IT	
True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 35 GNDCPU 36 VDDIO_1.5 37 VDDCORE_3.3 38 CPUC1_LPR CPUC1_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 39 CPUT1_LPR OUT Ground pin for the CPU outputs Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 40 GNDCPU 41 VDDIO_1.5 PWR Ground pin for the CPU outputs 41 VDDIO_1.5 PWR Power supply for low power differential outputs, nominal 1.5V. CPUC0_LPR OUT Complementary clock of differential outputs, nominal 1.5V. CPUC0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 43 CPUT0_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 44 CPU_STOP# IN Stops all CPU clocks, except those set to be free running clocks This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state. 46 X2 OUT Crystal output, Nominally 14.318MHz IN Crystal input, Nominally 14.318MHz	33	CPUC2_LPR	001	
series resistor. No 50 ohm resistor to GND needed. 35 GNDCPU 36 VDDIO_1.5 37 VDDCORE_3.3 38 CPUC1_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 39 CPUT1_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 40 GNDCPU 41 VDDIO_1.5 PWR Ground pin for the CPU outputs 41 VDDIO_1.5 PWR Power supply for low power differential outputs, nominal 1.5V. COUTO_LPR OUT Complementary clock of differential outputs, nominal 1.5V. COMPLEMENTARY COMPLEM		ODLITO LDD	O. IT	
Solution PWR Ground pin for the CPU outputs	34	CPU12_LPR	OUT	
36 VDDIO_1.5	35	GNDCPU	PWR	
37 VDDCORE_3.3 PWR 3.3V power for the PLL core 38 CPUC1_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 39 CPUT1_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 40 GNDCPU PWR Ground pin for the CPU outputs 41 VDDIO_1.5 PWR Power supply for low power differential outputs, nominal 1.5V. 42 CPUC0_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 43 CPUT0_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 44 CPU_STOP# IN Stops all CPU clocks, except those set to be free running clocks This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state. 46 X2 OUT Crystal output, Nominally 14.318MHz 47 X1 IN Crystal input, Nominally 14.318MHz		VDDIO 1.5	PWR	
CPUC1_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. PWR Ground pin for the CPU outputs PWR Power supply for low power differential outputs, nominal 1.5V. CPUC0_LPR CPUC0_LPR OUT Complementary clock of differential outputs, nominal 1.5V. COMPLEMENTARY CONTROLLED OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated series resistor. No 50 ohm resistor to 6ND needed. True clock of differential pair 0.8V push-pull CPU outputs vish push pul				
330nm series resistor. No 50 ohm resistor to GND needed. 39 CPUT1_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 40 GNDCPU PWR Ground pin for the CPU outputs 41 VDDIO_1.5 PWR Power supply for low power differential outputs, nominal 1.5V. CPUCO_LPR OUT CPUT0_LPR OUT CPUT0_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state. 46 X2 OUT Crystal output, Nominally 14.318MHz IN Crystal input, Nominally 14.318MHz				
True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. 40 GNDCPU 41 VDDIO_1.5 PWR Power supply for low power differential outputs, nominal 1.5V. CPUCO_LPR OUT COMPLEMENT COUT COMPLEMENT COMPLEMENT COMPLEMENT COMPLEMENT COMPLEMENT C	38	CPUC1_LPR	OUT	
series resistor. No 50 ohm resistor to GND needed. 40 GNDCPU 41 VDDIO_1.5 42 CPUCO_LPR 43 CPUTO_LPR 44 CPU_STOP# 45 CLKPWRGD#/PD_3.3 46 X2 46 OUT Series resistor. No 50 ohm resistor to GND needed. 47 VDDIO_1.5 PWR Power supply for low power differential outputs, nominal 1.5V. Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. IN Stops all CPU clocks, except those set to be free running clocks This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state. 46 X2 OUT Crystal output, Nominally 14.318MHz IN Crystal input, Nominally 14.318MHz.				
40 GNDCPU 41 VDDIO_1.5 42 CPUCO_LPR 43 CPUTO_LPR 44 CPU_STOP# 45 CLKPWRGD#/PD_3.3 46 X2 47 X1 47 COMPRED 46 PWR Ground pin for the CPU outputs 47 PWR Power supply for low power differential outputs, nominal 1.5V. Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. This 3.3V LVTTL input is a level sensitive strobe used to determine when latch input are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state. 46 X2 OUT Crystal output, Nominally 14.318MHz 47 X1 IN Crystal input, Nominally 14.318MHz.	39	CPUI1_LPR	OUT	, , , , , , , , , , , , , , , , , , ,
41 VDDIO_1.5 PWR Power supply for low power differential outputs, nominal 1.5V. 42 CPUCO_LPR 43 CPUTO_LPR 44 CPU_STOP# 45 CLKPWRGD#/PD_3.3 46 X2 47 X1 47 VDDIO_1.5 PWR Power supply for low power differential outputs, nominal 1.5V. Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. IN Stops all CPU clocks, except those set to be free running clocks This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state. 46 X2 OUT Crystal output, Nominally 14.318MHz IN Crystal input, Nominally 14.318MHz.	40	GNDCPU	PWR	
CPUCO_LPR OUT Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. IN Stops all CPU clocks, except those set to be free running clocks This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state. OUT Crystal output, Nominally 14.318MHz IN Crystal input, Nominally 14.318MHz.				
33ohm series resistor. No 50 ohm resistor to GND needed. CPUTO_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. IN Stops all CPU clocks, except those set to be free running clocks This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state. OUT Crystal output, Nominally 14.318MHz IN Crystal input, Nominally 14.318MHz.				
CPUT0_LPR OUT True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm series resistor. No 50 ohm resistor to GND needed. IN Stops all CPU clocks, except those set to be free running clocks This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state. OUT Crystal output, Nominally 14.318MHz IN Crystal input, Nominally 14.318MHz.	42	CPUC0_LPR	OUT	
series resistor. No 50 ohm resistor to GND needed. IN Stops all CPU clocks, except those set to be free running clocks This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state. OUT Crystal output, Nominally 14.318MHz This is an active low input. / Asynchronous active high input pin used to place the device into a power down state.				
44 CPU_STOP# IN Stops all CPU clocks, except those set to be free running clocks This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state. 46 X2 OUT Crystal output, Nominally 14.318MHz 47 X1 IN Crystal input, Nominally 14.318MHz.	43	CPU10_LPR	OUT	, · · · · · · · · · · · · · · · · · · ·
This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state. 46 X2 OUT Crystal output, Nominally 14.318MHz 47 X1 IN Crystal input, Nominally 14.318MHz.	44	CPU STOP#	IN	
45 CLKPWRGD#/PD_3.3 IN are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state. 46 X2 OUT Crystal output, Nominally 14.318MHz 47 X1 IN Crystal input, Nominally 14.318MHz.				-
active high input pin used to place the device into a power down state. 46 X2 OUT Crystal output, Nominally 14.318MHz 47 X1 IN Crystal input, Nominally 14.318MHz.				· ·
46 X2 OUT Crystal output, Nominally 14.318MHz 47 X1 IN Crystal input, Nominally 14.318MHz.	45	CLKPWRGD#/PD_3.3	IN	
47 X1 IN Crystal input, Nominally 14.318MHz.				active high input pin used to place the device into a power down state.
47 X1 IN Crystal input, Nominally 14.318MHz.	46	X2	OUT	Crystal output, Nominally 14.318MHz
I I WILL ON THE WILL OWN DILLOUND A THE WIND THE GOODS TO THE COURS TO	48	VDDREF_3.3	PWR	Power pin for the XTAL and REF clocks, nominal 3.3V

MLF Pin Configuration

48-pin MLF, 6x6 mm, 0.4mm pitch

^{*} indicates inputs with internal pull up of ~10Kohm to 3.3V


MLF Pin Description

PIN#	PIN NAME	TYPE	DESCRIPTION
1	CPU_STOP#	IN	Stops all CPU clocks, except those set to be free running clocks
2	CLKPWRGD#/PD_3.3	IN	This 3.3V LVTTL input is a level sensitive strobe used to determine when latch inputs are valid and are ready to be sampled. This is an active low input. / Asynchronous active high input pin used to place the device into a power down state.
3	X2	OUT	Crystal output, Nominally 14.318MHz
4	X1	IN	Crystal input, Nominally 14.318MHz.
5	VDDREF_3.3	PWR	Power pin for the XTAL and REF clocks, nominal 3.3V
6	REF	OUT	14.318 MHz reference clock.
7	GNDREF	PWR	Ground pin for the REF outputs.
8	VDDCORE_3.3	PWR	3.3V power for the PLL core
9	FSC_L	IN	Low threshold input for CPU frequency selection. Refer to input electrical characteristics for Vil_FS and Vih_FS values.
10	TEST_MODE	IN	TEST_MODE is a real time input to select between Hi-Z and REF/N divider mode while in test mode. Refer to Test Clarification Table.
11	TEST_SEL	IN	TEST_SEL: latched input to select TEST MODE 1 = All outputs are tri-stated for test 0 = All outputs behave normally.
12	SCLK_3.3	IN	Clock pin of SMBus circuitry, 3.3V tolerant.
13	SDATA_3.3	I/O	Data pin for SMBus circuitry, 3.3V tolerant.
14	VDDCORE_3.3	PWR	3.3V power for the PLL core
15	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
16	DOT96C_LPR	OUT	Complement clock of low power differential pair for 96.00MHz DOT clock. No 50ohm resistor to GND needed. No Rs needed.
17	DOT96T_LPR	OUT	True clock of low power differential pair for 96.00MHz DOT clock. No 50ohm resistor to GND needed. No Rs needed.
18	GNDDOT	PWR	Ground pin for DOT clock output
19	GNDLCD	PWR	Ground pin for LCD clock output
20	LCD100C_LPR	OUT	Complement clock of low power differential pair for LCD100 SS clock. No 50ohm resistor to GND needed. No Rs needed.
21	LCD100T_LPR	OUT	True clock of low power differential pair for LCD100 SS clock. No 50ohm resistor to GND needed. No Rs needed.
22	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
23	VDDCORE_3.3	PWR	3.3V power for the PLL core
24	*CR#0	IN	Clock request for SRC0, 0 = enable, 1 = disable

MLF Pin Description (continued)

PIN#	PIN NAME	TYPE	DESCRIPTION
25	GNDSRC	PWR	Ground pin for the SRC outputs
26	SRCC0_LPR	OUT	Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm
20	Shoou_LPh	0	series resistor. No 50ohm resistor to GND needed.
27	SRCT0_LPR	OUT	True clock of differential 0.8V push-pull SRC output with integrated 33ohm series
21	SHCTU_LFH	001	resistor. No 50ohm resistor to GND needed.
28	*CR#1	IN	Clock request for SRC1, 0 = enable, 1 = disable
29	VDDCORE_3.3	PWR	3.3V power for the PLL core
30	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
31	SRCC1_LPR	OUT	Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm
31	SHOOT_EFT	001	series resistor. No 50ohm resistor to GND needed.
32	SRCT1_LPR	OUT	True clock of differential 0.8V push-pull SRC output with integrated 33ohm series
02			resistor. No 50ohm resistor to GND needed.
33	GNDSRC	PWR	Ground pin for the SRC outputs
34	SRCC2_LPR	OUT	Complementary clock of differential 0.8V push-pull SRC output with integrated 33ohm
	OTIOOZ_EFT	001	series resistor. No 50ohm resistor to GND needed.
35	SRCT2_LPR	OUT	True clock of differential 0.8V push-pull SRC output with integrated 33ohm series
- 00		001	resistor. No 50ohm resistor to GND needed.
36	*CR#2	IN	Clock request for SRC2, 0 = enable, 1 = disable
37	FSB_L	IN	Low threshold input for CPU frequency selection. Refer to input electrical
- 07	1 0B_E	111	characteristics for Vil_FS and Vih_FS values.
38	CPUC2_LPR	OUT	Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated
	01 002_E111	001	33ohm series resistor. No 50 ohm resistor to GND needed.
39	CPUT2_LPR	OUT	True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm
			series resistor. No 50 ohm resistor to GND needed.
40	GNDCPU	PWR	Ground pin for the CPU outputs
41	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
42	VDDCORE_3.3	PWR	3.3V power for the PLL core
43	CPUC1_LPR	OUT	Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated
	OF GOT_EFT	001	33ohm series resistor. No 50 ohm resistor to GND needed.
44	CPUT1_LPR	OUT	True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm
			series resistor. No 50 ohm resistor to GND needed.
45	GNDCPU	PWR	Ground pin for the CPU outputs
46	VDDIO_1.5	PWR	Power supply for low power differential outputs, nominal 1.5V.
47	CPUC0_LPR	OUT	Complementary clock of differential pair 0.8V push-pull CPU outputs with integrated
.,	5. 555_E. T.		33ohm series resistor. No 50 ohm resistor to GND needed.
48	CPUT0_LPR	OUT	True clock of differential pair 0.8V push-pull CPU outputs with integrated 33ohm
70	0. 0.0_E. 1.	001	series resistor. No 50 ohm resistor to GND needed.

Funtional Block Diagram

Power Groups

Pin N	umber				
VDD	GND	Description			
41, 46	40.45	CPUCLK	Low power outputs		
42	40, 45	CPUCLK	VDDCORE_3.3V		
30	25 22	SRCCLK	Low power outputs		
29	25, 33	SHOOLK	VDDCORE_3.3V		
22	19	LCDCLK	Low power outputs		
23	19	LODGLK	VDDCORE_3.3V		
15	18	DOT 96Mhz	Low power outputs		
14	10	DOT 96WITE	VDDCORE_3.3V		
5	7)	Xtal, REF		

Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
3.3V Supply Voltage	VDDxxx_3.3	Supply Voltage		3.9	V	1,2
1.5V Supply Voltage	VDDxxx_1.5	Supply Voltage		3.9	٧	1,2
3.3_Input High Voltage	V _{IH3.3}	3.3V Inputs		VDD_3.3+ 0.3V	٧	1,2,3
Minimum Input Voltage	V _{IL}	Any Input	GND - 0.5		V	1
Storage Temperature	Ts	-	-65	150	Ç	1,2
Input ESD protection	ESD prot	Human Body Model	2000		V	1,2
input 235 protection		Man Machine Model	200		٧	1,2

Notes:

Electrical Characteristics - Input/Supply/Common Output Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Ambient Operating Temp	T _{ambientITEMP}	No Airflow	-40	85	°C	1
3.3V Supply Voltage	VDDxxx_3.3	3.3V +/- 5%	3.135	3.465	V	1
1.5V Supply Voltage	VDDxxx_1.5	1.5V - 5% to 3.3V + 5%	1.425	3.465	V	1
3.3V Input High Voltage	V _{IHSE3.3}	Single-ended inputs	2	$V_{DD} + 0.3$	٧	1
3.3V Input Low Voltage	V _{ILSE3.3}	Single-ended inputs	V _{SS} - 0.3	0.8	٧	1
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}, V_{IN} = GND$	-5	5	uA	1
Input Leakage Current	I _{INRES}	Inputs with pull or pull down resistors. (CR# pins) $V_{IN} = V_{DD_{,}} V_{IN} = GND$	-200	200	uA	1
Output High Voltage	V _{OHSE}	Single-ended outputs, I _{OH} = -1mA	2.4		٧	1
Output Low Voltage	V _{OLSE}	Single-ended outputs, I _{OL} = 1 mA		0.4	٧	1
Low Threshold Input- High Voltage	V_{IH_FS}	3.3 V +/-5%	0.7	1.5	٧	1
Low Threshold Input- Low Voltage	V_{IL_FS}	3.3 V +/-5%	V _{SS} - 0.3	0.35	٧	1
	I _{DD_DEFAULT}	3.3V supply, LCDPLL off		65	mA	1
Operating Supply Current	I _{DD_LCDEN}	3.3V supply, LCDPLL enabled		70	mA	1
3 - 1,7	I _{DD_IO}	1.5V supply, Differential IO current, all outputs enabled		65 70 55	mA	1
	I _{DD_PD3.3}	3.3V supply, Power Down Mode		2	mA	1
Power Down Current	I _{DD_PDIO}	1.5V IO supply, Power Down Mode		0.5	mA	1
Input Frequency	F _i	V _{DD} = 3.3 V		15	MHz	2
Pin Inductance	L _{pin}			7	nΗ	1
	C _{IN}	Logic Inputs	1.5	5	pF	1
Input Capacitance	C _{OUT}	Output pin capacitance		6	pF	1
	C _{INX}	X1 & X2 pins		5	pF	1
Spread Spectrum Modulation Frequency	f _{SSMOD}	Triangular Modulation	30	33	kHz	1

¹Guaranteed by design and characterization, not 100% tested in production.

² Operation under these conditions is neither implied, nor guaranteed.

³ Maximum input voltage is not to exceed maximum VDD

AC Electrical Characteristics - Input/Common Parameters

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Clk Stabilization	T _{STAB}	From VDD Power-Up or de- assertion of PD# to 1st clock		1.8	ms	1
Tdrive_SRC	T _{DRSRC}	SRC output enable after CR# assertion		15	ns	1
Tdrive_PD#	T _{DRPD}	Differential output enable after PD# de-assertion		300	us	1
Tdrive_CPU	T _{DRSRC}	CPU output enable after CPU_STOP# de-assertion		10	ns	1
Tfall_PD#	T _{FALL}	Fall/rise time of PD# and		5	ns	1
Trise_PD#	T _{RISE}	CPU_STOP# inputs		5	ns	1

AC Electrical Characteristics - Low Power Differential Outputs

			•			
PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	NOTES
Rising Edge Slew Rate	t _{SLR}	Differential Measurement	0.5	6	V/ns	1,2
Falling Edge Slew Rate	t _{FLR}	Differential Measurement	0.5	6	V/ns	1,2
Rise/Fall Time Variation	t _{SLVAR}	Single-ended Measurement		125	ps	1
Maximum Output Voltage	V_{HIGH}	Includes overshoot		1150	mV	1
Minimum Output Voltage	V_{LOW}	Includes undershoot	-300		mV	1
Differential Voltage Swing	V _{SWING}	Differential Measurement	300		mV	1
Crossing Point Voltage	V _{XABS}	Single-ended Measurement	300	550	mV	1,3,4
Crossing Point Variation	V _{XABSVAR}	Single-ended Measurement		140	mV	1,3,5
Duty Cycle	D _{CYC}	Differential Measurement	45	55	%	1
CPU Jitter - Cycle to Cycle	CPUJ _{C2C}	Differential Measurement		85	ps	1
SRC Jitter - Cycle to Cycle	SRCJ _{C2C}	Differential Measurement		125	ps	1
DOT Jitter - Cycle to Cycle	DOTJ _{C2C}	Differential Measurement		250	ps	1
CPU[2:0] Skew	CPU _{SKEW10}	Differential Measurement		100	ps	1
SRC[2:0] Skew	SRC _{SKEW}	Differential Measurement		250	ps	1

Electrical Characteristics - REF-14.318MHz

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
Long Accuracy	ppm	see Tperiod min-max values	-300	300	ppm	1,2
Clock period	T _{period}	14.318MHz output nominal	69.8203	69.8622	ns	2
Absolute min/max period	T _{abs}	14.318MHz output nominal	69.8203	70.86224	ns	2
Output High Voltage	V_{OH}	I _{OH} = -1 mA	2.4		٧	1
Output Low Voltage	V_{OL}	I _{OL} = 1 mA		0.4	V	1
Output High Current	I _{OH}	V_{OH} @ MIN = 1.0 V, V_{OH} @ MAX = 3.135 V	-33	-33	mA	1
Output Low Current	l _{oL}	V_{OL} @MIN = 1.95 V, V_{OL} @MAX = 0.4 V	30	38	mA	1
Rising Edge Slew Rate	t _{SLR}	Measured from 0.8 to 2.0 V	1	4	V/ns	1
Falling Edge Slew Rate	t _{FLR}	Measured from 2.0 to 0.8 V	1	4	V/ns	1
Duty Cycle	d _{t1}	V _T = 1.5 V	45	55	%	1
Jitter	t _{jcyc-cyc}	V _T = 1.5 V		1000	ps	1

Electrical Characteristics - SMBus Interface

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS	Notes
SMBus Voltage	V_{DD}		2.7	3.3	V	1
Low-level Output Voltage	V _{OLSMB}	@ I _{PULLUP}		0.4	V	1
Current sinking at	I _{PULLUP}	SMB Data Pin	4		mA	1
$V_{OLSMB} = 0.4 \text{ V}$	PULLUP					
SCLK/SDATA	т	(Max VIL - 0.15) to		1000	ns	1
Clock/Data Rise Time	I RI2C	(Min VIH + 0.15)		1000	110	
SCLK/SDATA	т	(Min VIH + 0.15) to		300	ns	-1
Clock/Data Fall Time	FI2C	(Max VIL - 0.15)		300	115	'
Maximum SMBus Operating	Г	Block Mode		100	kHz	4
Frequency	F _{SMBUS}	Block Mode		100	KHZ	ı

Notes on Electrical Characteristics:

Clock Periods Differential Outputs with Spread Spectrum Enabled

				, o p		Cottain En			,	
Measureme	ent Window	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
Symbol		Lg-	-ssc	-ppm error	0ppm	+ ppm error	+SSC	Lg+		
Definition		Absolute Period	Short-term Average	Long-Term Average	Period	Long-Term Average	Short-term Average	Period		
Defin	ition	Minimum Absolute	Minimum Absolute	Minimum Absolute	Nominal	Maximum	Maximum	Maximum		
		Period	Period	Period					Units	Notes
	SRC 100	9.87400	9.99900	9.99900	10.00000	10.00100	10.05130	10.17630	ns	1,2
nal me	CPU 100	9.91400	9.99900	9.99900	10.00000	10.00100	10.05130	10.13630	ns	1,2
Signal Name	CPU 133	7.41425	7.49925	7.49925	7.50000	7.50075	7.53845	7.62345	ns	1,2
	CPU 166	5.91440	5.99940	5.99940	6.00000	6.00060	6.03076	6.11576	ns	1,2

Clock Periods Differential Outputs with Spread Spectrum Disabled

Measurem	ent Window	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
Syr	nbol	Lg-	-ssc	-ppm error	0ppm	+ ppm error	+SSC	Lg+		
Definition		Absolute Period	Short-term Average	Long-Term Average	Period	Long-Term Average	Short-term Average	Period		
		Minimum Absolute Period	Minimum Absolute Period	Minimum Absolute Period	Nominal	Maximum	Maximum	Maximum	Units	Notes
ø	SRC 100	9.87400		9.99900	10.00000	10.00100		10.17630	ns	1,2
<u>a</u>	CPU 100	9.91400		9.99900	10.00000	10.00100		10.13630	ns	1,2
<u>8</u>	CPU 133	7.41425		7.49925	7.50000	7.50075		7.62345	ns	1,2
Signal Name	CPU 166	5.91440		5.99940	6.00000	6.00060		6.11576	ns	1,2
S	DOT 96	10.16560		10.41560	10.41670	10.41770		10.66770	ns	1,2

 $^{^{\}rm 1}\text{Guaranteed}$ by design and characterization, not 100% tested in production.

¹Guaranteed by design and characterization, not 100% tested in production.

² Slew rate measured through Vswing centered around differential zero

³ Vxabs is defined as the voltage where CLK = CLK#

⁴ Only applies to the differential rising edge (CLK rising and CLK# falling)

⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#.

⁶ All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REF is at 14.31818MHz

⁷ Operation under these conditions is neither implied, nor guaranteed.

 $^{^2}$ All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz

Table 1: CPU Frequency Select Table

FS _L C ¹	FS _L B ¹	CPU	SRC	DOT	LCD	REF
I SLC	וייי	MHz	MHz	MHz	MHz	MHz
0	0	133.33				
0	1	166.67	100.00	06.00	100.00	14.318
1	0	100.00	100.00	96.00	100.00	14.316
1	1	66.67				

FS_LC is a low-threshold input.Please see V_{IL_FS} and V_{IH_FS} specifications in the Input/Supply/Common Output Parameters Table for correct values. Also refer to the Test Clarification Table.

Table 2: LCD Spread Select Table (Pin 20/21)

B1b5	B1b4	B1b3	Spread %	Comment
0	0	0	-0.5%	LCD100
0	0	1	-1%	LCD100
0	1	0	-2%	LCD100
0	1	1	-2.5%	LCD100
1	0	0	+/- 0.25%	LCD100
1	0	1	+/-0.5%	LCD100
1	1	0	+/-1%	LCD100
1	1	1	+/-1.25%	LCD100

Table 3: CPU N-step Programming

rabio of or o it stop i regianning							
CPU (MHz)	P	Default N (hex)	Fcpu				
133.33	3	64	= 4MHz x N/P				
166.67	3	7D	= 4MHz x N/P				
100.00	4	64	= 4MHz x N/P				
200.00	2	64	= 4MHz x N/P				

CPU Power Management Table

PD	CPU_STOP#	SMBus Register OE	CPU	CPU#
0	1	Enable	Running	Running
1	Χ	Enable	Low/20K	Low
0	0	Enable	High	Low
0	X	Disable	Low/20K	Low

SRC, LCD, DOT Power Management Table

0110	, LOD, DOT TOWC	managomone rabi	•			
PD	CR_x#	SMBus Register OE	SRC	SRC#	DOT/LCD	DOT#/LCD#
0	0	Enable	Running	Running	Running	Running
1	X	X	Low/20K	Low	Low/20K	Low
0	1	Enable	Low/20K	Low	Running	Running
0	Х	Disable	Low/20K	Low	Low/20K	Low

REF Power Management Table

PD	SMBus Register OE	REF
0	Enable	Running
1	Χ	Low
0	Disable	Low

General SMBus serial interface information for the ICS9EMS9633

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address D2_(h)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
- ICS clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

Ind	ex Block W	/ rit	te Operation
Cor	ntroller (Host)		ICS (Slave/Receiver)
Т	starT bit		
Slav	e Address D2 _(h)		
WR	WRite		
	-		ACK
Begi	nning Byte = N		
			ACK
Data	Byte Count = X		
			ACK
Begir	ning Byte N		
			ACK
	\Diamond	ţ	
	\rightarrow	X Byte	\rightarrow
	\Q	×	\Diamond
			\rightarrow
Byte	e N + X - 1		
			ACK
Р	stoP bit		

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address D2 (h)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address D3 (h)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(h) was written to byte 8).
- · Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- · Controller (host) will send a stop bit

Ind	ex Block Rea	ad	Operation		
Con	troller (Host)	IC	S (Slave/Receiver)		
Т	starT bit				
Slave	e Address D2 _(h)				
WR	WRite				
			ACK		
Begir	nning Byte = N				
			ACK		
RT	Repeat starT				
Slave	Address D3 _(H)				
RD	ReaD				
		ACK			
		Data Byte Count = X			
	ACK				
			Beginning Byte N		
	ACK				
		X Byte	O		
	O	В	O		
\Q		$ \times $	Q		
O					
			Byte N + X - 1		
N	Not acknowledge				
Р	stoP bit				

Byte 0 PLL & Divider Enable Register

Bit(s)	Pin #	Name	Description	Туре	0	1	Default
7	-	PLL1 Enable	This bit controls whether the PLL driving the CPU and SRC clocks is enabled or not.	RW	0 = Disabled	1 = Enabled	1
6	-	PLL2 Enable	This bit controls whether the PLL driving the DOT and clock is enabled or not.	RW	0 = Disabled	1 = Enabled	1
5	-	PLL3 Enable	This bit controls whether the PLL driving the LCD clock is enabled or not.	RW	0 = Disabled	1 = Enabled	1
4	-		Reserved				0
3	-	CPU Divider Enable	This bit controls whether the CPU output divider is enabled or not. NOTE: This bit should be automatically set to '0' if bit 7 is set to '0'.	RW	0 = Disabled	1 = Enabled	1
2	-	SRC Output Divider Enable	This bit controls whether the SRC output divider is enabled or not. NOTE: This bit should be automatically set to '0' if bit 7 is set to '0'.	RW	0 = Disabled	1 = Enabled	1
1	-	LCD Output Divider Enable	This bit controls whether the LCD output divider is enabled or not. NOTE: This bit should be automatically set to '0' if bit 5 is set to '0'.	RW	0 = Disabled	1 = Enabled	1
0	-	DOT Output Divider Enable	This bit controls whether the DOT output divider is enabled or not. NOTE: This bit should be automatically set to '0' if bit 6 is set to '0'.	RW	0 = Disabled	1 = Enabled	1

Byte 1 PLL SS Enable/Control Register

Ditt			nt of Flegister	_	1 .	1 .	
Bit(s)	Pin #	Name	Description	Type	0	1	Default
7		PLL1 SS Enable	This bit controls whether PLL1 has spread enabled or not. Spread spectrum for PLL1 is set at -0.5% down-spread. Note that PLL1 drives the CPU and SRC clocks.	RW	0 = Disabled	1 = Enabled	1
6		PLL3 SS Enable	This bit controls whether PLL3 has spread enabled or not. Note that PLL3 drives the SSC clock, and that the spread spectrum amount is set in bits 3-5.	RW	0 = Disabled	1 = Enabled	1
5			These 3 bits select the frequency of PLL3 and the		0 T-1-1- 0-	1 OD O	0
4		PLL3 FS Select	SSC clock when Byte 1 Bit 6 (PLL3 Spread	RW		LCD Spread	0
3			Spectrum Enable) is set.		Selec	t Table	0
2			Reserved				0
1			Reserved				0
0			Reserved				0

Byte 2 Output Enable Register

Bit(s)	Pin #	Name	Description	Type	0	1	Default
7		CPU0 Enable	This bit controls whether the CPU[0] output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
6		CPU1 Enable	This bit controls whether the CPU[1] output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
5		CPU2 Enable	This bit controls whether the CPU[2] output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
4		SRC0 Enable	This bit controls whether the SRC[0] output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
3		SRC1 Enable	This bit controls whether the SRC[1] output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
2		SRC2 Enable	This bit controls whether the SRC[2] output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
1		DOT Enable	This bit controls whether the DOT output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
0		LCD100 Enable	This bit controls whether the LCD output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1

Byte 3 Output Control Register

Byte	3	Output Control Reg	ister				
Bit(s)	Pin #	Name	Description	Type	0	1	Default
7			Reserved				0
6			Reserved				0
5		REF Enable	This bit controls whether the REF output buffer is enabled or not.	RW	0 = Disabled	1 = Enabled	1
4		REF Slew	These bits control the edge rate of the REF clock.	RW		Edge Rate n Edge Rate	10
3		TILI SIEW	These bits control the edge rate of the FIET clock.	1100	10 = Fast Edge Rate 11 = Reserved		10
2		CPU0 Stop Enable	This bit controls whether the CPU[0] output buffer is free-running or stoppable. If it is set to stoppable the CPU[0] output buffer will be disabled with the assertion of CPU_STP#.	RW	Free Running	Stoppable	0
1		CPU1 Stop Enable	This bit controls whether the CPU[1] output buffer is free-running or stoppable. If it is set to stoppable the CPU[1] output buffer will be disabled with the assertion of CPU_STP#.	RW	Free Running	Stoppable	0
0		CPU2 Stop Enable	This bit controls whether the CPU[2] output buffer is free-running or stoppable. If it is set to stoppable the CPU[2] output buffer will be disabled with the assertion of CPU_STP#.	RW	Free Running	Stoppable	0

Byte 4 CPU PLL N Register

Bit(s)	Pin #	Name	Control Function	Type	0	1	Default		
Bit 7			Reserved				1		
Bit 6			Reserved				1		
Bit 5			Reserved						
Bit 4			Reserved						
Bit 3			Reserved				1		
Bit 2			Reserved				1		
Bit 1			Reserved						
Bit 0		CPU N Div8	N Divider Prog bit 8	RW			0		

Byte 5 CPU PLL/N Register

Bit(s)	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7		CPU N Div7	RW RW RW Default depends on latched input frequency. See Table 3: CPU N-step Programming RW Default for CPU = 166 is 7Dh.	RW		Χ	
Bit 6		CPU N Div6		RW	Default dener	Χ	
Bit 5		CPU N Div5		Χ			
Bit 4		CPU N Div4		Х			
Bit 3		CPU N Div3	See Table 3: CPU N-step Programming	RW			Χ
Bit 2		CPU N Div2		RW	Default for all other frequencies is 64h.	Χ	
Bit 1		CPU N Div1		RW	15 (Χ	
Bit 0		CPU N Div0		RW		Χ	

Byte 6 Reserved

		i icoci vca					
Bit(s)	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7			Reserved				1
Bit 6			Reserved				1
Bit 5			Reserved				1
Bit 4			Reserved				1
Bit 3			Reserved				0
Bit 2			Reserved				0
Bit 1			Reserved				1
Bit 0			Reserved				1

Byte 7 Reserved

Bit(s)	Pin #	Name	Control Function	Type	0	1	Default	
Bit 7			Reserved				0	
Bit 6			Reserved				0	
Bit 5			Reserved				0	
Bit 4			Reserved					
Bit 3			Reserved				0	
Bit 2			Reserved				0	
Bit 1			Reserved				0	
Bit 0			Reserved				0	

Byte 8 Reser	ved	
--------------	-----	--

Bit(s)	Pin #	Name	Control Function	Type	0	1	Default
Bit 7			Reserved				0
Bit 6			Reserved				0
Bit 5			Reserved				0
Bit 4			Reserved				0
Bit 3			Reserved				0
Bit 2			Reserved				0
Bit 1			Reserved				0
Bit 0			Reserved				0

Byte 9 LCD100 PLL N Register

Bit(s)	Pin #	Name	Control Function	Туре	0	1	Default
Bit 7		LCD100 N Div7		R			Х
Bit 6		LCD100 N Div6		R			Х
Bit 5		LCD100 N Div5		R			Х
Bit 4		LCD100 N Div4	N Divider Programming Byte9 bit(7:0) and Byte8	R	See N-step	orogramming	Х
Bit 3		LCD100 N Div3	bit7	R	forn	nula	Х
Bit 2		LCD100 N Div2		R			Х
Bit 1		LCD100 N Div1		R			Х
Bit 0		LCD100 N Div0		R			Х

Byte 10 Status Readback Register

			g. e. e.					
Bit(s)	Pin #	Name	Description	Туре	0	1	Default	
7	37	FSB	Frequency Select B	R	See Table 1: 0	Latch		
6	9	FSC	Frequency Select C	R	Selec	Latch		
5	24	CR0# Readbk	Real time CR0# State Indicator	R	CR0# is Low	CR0# is High	Χ	
4	28	CR1# Readbk	Real time CR1# State Indicator	R	CR1# is Low	CR1# is High	Χ	
3	36	CR2# Readbk	Real time CR2# State Indicator	R	CR2# is Low	CR2# is High	Х	
2			Reserved					
1			Reserved					
0			Reserved				0	

Byte 11 Revision ID/Vendor ID Register

Bit(s)	Pin #	Name	Description	Type	0	1	Default
7		Rev Code Bit 3		R			Х
6		Rev Code Bit 2	Revision ID	R		Χ	
5		Rev Code Bit 1	(0 for A rev)	R		Χ	
4		Rev Code Bit 0		R	Vendor	Χ	
3		Vendor ID bit 3		R	vendoi	Specific	0
2		Vendor ID bit 2	Vendor ID	R		0	
1		Vendor ID bit 1	vendor ib	R		0	
0		Vendor ID bit 0		R		1	

Byte 12 Device ID Register

Bit(s)	Pin #	Name	Description	Type	0	1	Default
7		DEV_ID3	Device ID MSB	R			0
6		DEV_ID2	Device ID 2	R			0
5		DEV_ID1	Device ID 1	R			1
4		DEV_ID0	Device ID LSB	R			1
3			Reserved				0
2			Reserved				0
1		Reserved					
0			Reserved				0

Byte 13 Reserved Register

Bit(s)	Pin #	Name	Control Function	Type	0	1	Default
Bit 7			Reserved				0
Bit 6			Reserved				0
Bit 5			Reserved				0
Bit 4			Reserved				0
Bit 3			Reserved				0
Bit 2			Reserved				0
Bit 1			Reserved				0
Bit 0			Reserved				0

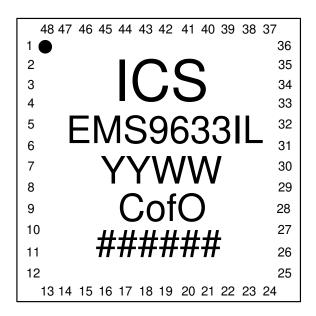
Byte 14 Reserved Register

Bit(s)	Pin #	Name	Control Function	Type	0	1	Default
Bit 7			Reserved				0
Bit 6			Reserved				0
Bit 5			Reserved				0
Bit 4			Reserved				0
Bit 3			Reserved				0
Bit 2			Reserved				0
Bit 1		Reserved				0	
Bit 0			Reserved				0

Byte 15 Byte Count Register

Bit(s)	Pin #	Name	Control Function	Type	0	1	Default
Bit 7		Reserved					
Bit 6			Reserved				0
Bit 5		BC5	Byte Count 5	RW			0
Bit 4		BC4	Byte Count 4	RW	Specifies Num	ber of bytes to	0
Bit 3		BC3	Byte Count 3	RW	be read back d	uring an SMBus	1
Bit 2		BC2	Byte Count 2	RW	rea	ad.	1
Bit 1		BC1	Byte Count 1	RW	Default	is 0xF.	1
Bit 0		BC0	Byte Count LSB	RW			1

Bytes 16:40 are reserved

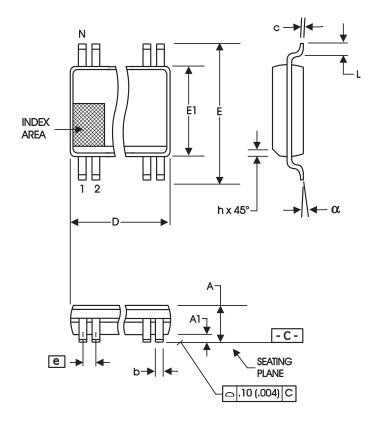

Byte 41 N Program Enable Register

Bit(s)	Pin #	Name	Control Function	Type	0	1	Default
Bit 7			Reserved				0
Bit 6			Reserved				0
Bit 5			Reserved				0
Bit 4		Reserved				0	
Bit 3			Reserved				0
Bit 2			Reserved				0
Bit 1		CPU N Enable	Enables CPU N programming	RW	Disabled	Enabled	0
Bit 0		LCD N Enable	Enables LCD N programming	RW	Disabled	Enabled	0

Test Clarification Table

Comments	Н	W	
	TEST_SEL HW PIN	TEST_MODE HW PIN	OUTPUT
	<0.35V	Х	NORMAL
Power-up w/ TEST_SEL = 1 to enter test mode Cycle power to disable test mode	>0.7V	<0.35V	HI-Z
TEST_MODE>low Vth input TEST_MODE is a real time input	>0.7V	>0.7V	REF/N

MLF Top Mark Information (9EMS9633KILF)


Line 1. Company name

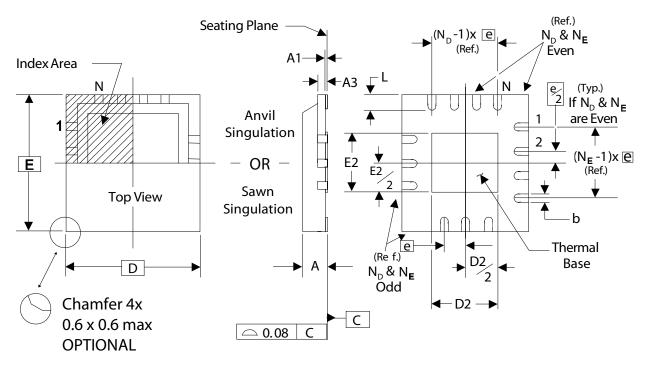
Line 2. Part Number

Line 3. YYWW = Date Code

Line 3. Country of Origin

Line 4. ###### = Lot Number

300 mil SSOP


	In Milli	meters	In Inches		
SYMBOL	COMMON DIMENSIONS		COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α	2.41	2.80	.095	.110	
A1	0.20	0.40	.008	.016	
b	0.20	0.34	.008	.0135	
С	0.13	0.25	.005	.010	
D	SEE VAF	RIATIONS	SEE VARIATIONS		
E	10.03	10.68	.395	.420	
E1	7.40	7.60	.291	.299	
е	0.635	BASIC	0.025 BASIC		
h	0.38	0.64	.015	.025	
L	0.50	1.02	.020	.040	
N	SEE VARIATIONS		SEE VARIATIONS		
а	0°	8°	0°	8°	

VARIATIONS

N	Dn	nm.	D (inch)		
N N	MIN	MAX	MIN	MAX	
48	15.75	16.00	.620	.630	

Reference Doc.: JEDEC Publication 95, MO-118

10-0034

THERMALLY ENHANCED, VERY THIN, FINE PITCH QUAD FLAT / NO LEAD PLASTIC PACKAGE

DIMENSIONS

SYMBOL	MIN.	MAX.	
OTWIDOL	IVIII V.	IVI/A/A.	
Α	0.8	1.0	
A1	0	0.05	
A3	0.20 Re	eference	
b	0.18	0.3	
е	e 0.40 BASIC		

DIMENSIONS

	48L
SYMBOL	TOLERANCE
N	48
N_D	12
N _E	12
D x E BASIC	6.00 x 6.00
D2 MIN. / MAX.	3.95 / 4.25
E2 MIN. / MAX.	3.95 / 4.25
L MIN. / MAX.	0.30 / 0.50

Ordering Information

Part/Order Number	Shipping Packaging	Package	Temperature
9EMS9633BKILF	Tubes	48-pin MLF	-40 to +85° C
9EMS9633BKILFT	Tape and Reel	48-pin MLF	-40 to +85° C
9EMS9633BFILF	Tubes	48-pin SSOP	-40 to +85° C
9EMS9633BFILFT	Tape and Reel	48-pin SSOP	-40 to +85° C

Parts that are ordered with a "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. Due to package size constraints, actual top-side marking may differ from the full orderable part number.

Revision History

Rev.	Issue Date	Description	Page #
0.1	07/31/09	Initial Release	ı
Α	08/19/09	Released to final	

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.0 Mar 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact Information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/