

Data Sheet No. PD60240

IRS20124(S)PbF

Digital Audio Driver with Discrete Deadtime and Protection

Features

- 200 V high voltage ratings deliver up to 1000 W output power in Class D audio amplifier applications
- Integrated deadtime generation and bi-directional over-current sensing simplify design
- Programmable compensated preset deadtime for improved THD performances over temperature
- High noise immunity
- Shutdown function protects devices from overload conditions
- Operates up to 1 MHz
- 3.3 V/5 V logic compatible input
- RoHS compliant

Product Summary

VSUPPLY 200 V max. IO+/- 1 A / 1.2 A typ. Selectable Deadtime 15 ns, 25 ns, 35 ns, 45 ns typ. Prop Delay Time 60 ns typ. Bi-Directional Over- Current Sensing

Typical Application Diagram

Description

The IRS20124 is a high voltage, high speed power MOSFET driver with internal deadtime and shutdown functions specially designed for Class D audio amplifier applications.

The internal dead time generation block provides accurate gate switch timing and enables tight deadtime settings for better THD performances.

In order to maximize other audio performance characteristics, all switching times are designed for immunity from external disturbances such as V_{CC} perturbation and incoming switching noise on the DT pin. Logic inputs are compatible with LSTTL output or standard CMOS down to 3.0 V without speed degradation. The output drivers feature high current buffers capable of sourcing 1.0 A and sinking 1.2 A. Internal delays are optimized to achieve minimal deadtime variations. Proprietary HVIC and latch immune CMOS technologies guarantee operation down to V_s = -4 V, providing outstanding capabilities of latch and surge immunities with rugged monolithic construction.

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. All currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

International **IQR** Rectifier

IRS20124S(PbF)

Recommended Operating Conditions

For proper operation, the device should be used within the recommended conditions. The Vs and COM offset ratings are tested with all supplies biased at a 15 V differential.

Note 1: Logic operational for V_S equal to -8 V to 200 V. Logic state held for V_S equal to -8 V to -V_{BS}.

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15 V, C_L = 1n F and T_A = 25 °C unless otherwise specified. Fig. 2 shows the timing definitions.

Static Electrical Characteristics

V_{BIAS} (V_{CC}, V_{BS}) = 15 V and T_A = 25 °C unless otherwise specified.

Lead Definitions

Block Diagram

International
IGR Rectifier

Figure 1. Switching Time Waveform Definitions

Figure 2. Shutdown Waveform Definitions

International
IGR Rectifier

Figure 3. OC Input FilterTime Definitions

Figure 4. OC Waveform Definitions

Figure 5. OC Waveform Definitions

 vs. Temperature

 vs. Temperature

Figure 14A. Offset Supply Leakage $\bf C$ urrent vs. Temperature V_B= 200 V

Figure 14B. Offset Supply Leakage Current vs. Supply Voltage

Figure 15A. VBS Supply Current vs. Temperature

Figure 15B. VBS Supply Current vs. Supply Voltage

 vs. Temperature

 vs. Supply Voltage

 vs. Temperature

Figure 21. V_{BS} Undervoltage Threshold (+) **vs. Tem perature**

 vs. Supply Voltage

Figure 25. Maximum V^S Negative Offset vs. Supply Voltage

Figure 26. DT Mode Select Threshold (1) vs. Temperature

Figure 27. DT Mode Select Threshold (2) vs. Temperature

Figure 28. DT Mode Select Threshold (3) vs. Temperature

International **IOR** Rectifier

Figure 29. DT Mode Select Threshold (4) vs. Temperature

Figure 30. DT LO Turn-Off to HO TurnOon (3) vs. Temperature

Figure 31. Positive OC Threshold(+) in VS vs. Temperature

Figure 32. Negative OC Threshold(-) in VS vs. Temperature

International **IOR** Rectifier

Functional description

Programmable Dead-time

The IRS20124 has an internal deadtime generation block to reduce the number of external components in the output stage of a Class D audio amplifier. Selectable deadtime through the DT/SD pin voltage is an easy and reliable function, which requires only two external resistors. The deadtime generation block is also designed to provide a constant deadtime interval, independent of V_{cc} fluctuations. Since the timings are critical to the audio performance of a Class D audio amplifier, the unique internal deadtime generation block is designed to be immune to noise on the DT/SD pin and the Vcc pin. Noise-free programmable deadtime function is available by selecting deadtime from four preset values, which are optimized and compensated.

How to Determine Optimal Deadtime

Please note that the effective deadtime in an actual application differs from the deadtime specified in this datasheet due to finite fall time, tf. The deadtime value in this datasheet is defined as the time period from the starting point of turn-off on one side of the switching stage to the starting point of turn-on on the other side as shown in Fig. 5. The fall time of MOSFET gate voltage must be subtracted from the deadtime value in the datasheet to determine the effective dead time of a Class D audio amplifier.

(Effective deadtime) = (Deadtime in datasheet) – (fall time, t_f)

Effective Deadtime

A longer deadtime period is required for a MOSFET with a larger gate charge value because of the longer tf. A shorter effective deadtime setting is always beneficial to achieve better linearity in the Class D switching stage. However, the likelihood of shoot-through current increases with narrower deadtime settings in mass production. Negative values of effective deadtime may cause excessive heat dissipation in the MOSFETs, potentially leading to their serious damage. To calculate the optimal deadtime in a given application, the fall time (t_f) for both output voltages, HO and LO, in the actual circuit needs to be measured. In addition, the effective deadtime can also vary with temperature and device parameter variations. Therefore, a minimum effective deadtime of 10 ns is recommended to avoid shoot-through current over the range of operating temperatures and supply voltages.

DT/SD pin

DT/SD pin provides two functions: 1) setting deadtime and 2) shutdown. The IRS20124 determines its operation mode based on the voltage applied to the DT/SD pin. An internal comparator translates which mode is being used by comparing internal reference voltages. Threshold voltages for each mode are set internally by a resistive voltage divider off V_{cc} , negating the need of using a precise absolute voltage to set the mode.

Deadtime Settings vs V_{DT} Voltage

Design Example

Table 1 shows suggested values of resistance for setting the deadtime. Resistors with up to 5% tolerance can be

used if these listed values are followed.

www.iri.com 21

Deadtime	R1	R2	DT/SD
mode	(<u>()</u>	(2)	(V)
DT1	< 10k	Open	1.00 (Vcc)
DT2	3.3k	8.2k	0.71 (Vcc)
DT3	5.6k	4.7k	0.46 (Vcc)
DT4	8.2k	3.3k	0.29 (Vcc)

Table 1. Suggested Resistor Values for Deadtime Settings

Shutdown

Since IRS20124 has internal deadtime generation, independent inputs for HO and LO are no longer provided. Shutdown mode is the only way to turn off both MOSFETs simultaneously to protect them from over current conditions. If the DT/SD pin detects an input voltage below the threshold, V_{DT4} the IRS20124 will output 0 V at both HO and LO outputs, forcing the switching output node to go into a high impedance state.

Over Current Sensing

In order to protect the power MOSFET, IRS20124 has a feature to detect over-current conditions, which can occur when speaker wires are shorted together. The over-current shutdown feature can be configured by combining the current sensing function with the shutdown mode via the DT/SD pin.

Load Current Direction in Class D Audio Application

In a Class D audio amplifier, the direction of the load current alternates according to the audio input signal. An over current condition can therefore happen during either a positive current cycle or a negative current cycle. It should be noted that **External Resistor**

International **ISR** Rectifier

IRS20124S(PbF)

each MOSFET carries a part of the load current in an audio cycle. Bi-directional current sensing offers over current detection capabilities in both cases by monitoring only the low side MOSFET.

Direction in MOSFET Current and Load Current

Bi-Directional Current Sensing

IRS20124 has an over-current detection function utilizing $R_{DS(ON)}$ of the low side switch as a current sensing shunt resistor. Due to the proprietary HVIC process, the IRS20124 is able to sense negative as well as positive current flow, enabling bi-directional load current sensing without the need for any additional external passive components.

Vs Waveform in Over-Current Condition

IRS20124 measures the current during the period when the low side MOSFET is turned on. Under normal operating conditions, V_s voltage for the low side switch is well within the trip threshold boundaries, $\mathsf{V}_{\mathsf{SOC}}$ and $\mathsf{V}_{\mathsf{SOC}^+}$ In the case of Fig. 9(b) which demonstrates the amplifier sourcing too much current to the load, the Vs node is found below the trip level, $V_{\rm soc}$. In Fig. 9(c) with opposite current direction, the amplifier sinks too much current from the load, positioning V_s well above trip level, V_{scot} .

Once the voltage in V_s exceeds the preset threshold, the OC pin pulls down to COM to detect an over-current condition.

Since the switching waveform usually contains over/under shoot and associated oscillatory artifacts on their transient edges, a 200 ns blanking interval is inserted in the V_s voltage sensing block at the instant the low side switch is engaged. Because of this blanking interval, the OC function will be unable to detect over current conditions if the low side ON duration less than 200 ns.

The bi-directional current sensing block has an internal V level shifter feeding the signal to the comparator. OC_{SET1} sets the threshold, and is given a trip level at V_{soc^*} , which is OC_{SET1} -V. In the same way, for a given OC_{SET2} , V_{SOC} is set at OC_{CFT2} -V.

External Resistor Network to Set OC Threshold

How to set OC Threshold

The positive and negative trip thresholds for bidirectional current sensing are set by the voltages at OC_{SET1} and OC_{SET2} .

The trip threshold voltages, V_{SOC+} and V_{SOC+} are determined by the required trip current levels, I_{TRIP+} $\textsf{I}_{\textsf{TRIP-}}$, and $\textsf{R}_{\textsf{DS(ON)}}$ in the low side MOSFET.

Since the sensed voltage of V_s is shifted up by 2.21 V internally and compared with the voltages fed to the OC_{SET1} and OC_{SET2} pins, the required value of OC_{SFT1} with respect to COM is

 $V_{\text{OCSET1}} = V_{\text{SOC+}} + 2.21 \text{ V} = I \times R_{\text{DS(ON)}} + 2.21 \text{ V}$

The same relation holds between $\rm OC_{SET2}$ and $\rm V_{SOC}$.

$$
V_{\text{OCSET2}} = V_{\text{SOC}} + 2.21 \text{ V} = I \times R_{\text{DS(ON)}} + 2.21 \text{ V}
$$

In general, $R_{DS(ON)}$ has a positive temperature coefficient that needs to be considered when the threshold level is being set. Please also note that, in the negative load current direction, the sensing voltage at the V_s node is limited by the body diode of the low side MOSFET as explained later.

Design Example

This example demonstrates how to use the external resistor network to set I_{TRIP+} and I_{TRIP-} to be ±11 A, using a MOSFET that has R_{DS(ON)} =60 $\infty\Omega$.

 $V_{ISET1} = V_{TH} + 2.21 \text{ V} = I_{TRIP+} \times R_{DS(ON)} + 2.21 \text{ V} =$ 11 x 60 ∞ Ω +2.21 V = 2.87 V V_{ISET2} = V_{TH-} + 2.21 V = I_{TRIP-} x $R_{DS(ON)}$ + 2.21 V = (−11) V 60 ∝Ω +2.21 V = 1.55 V

The total resistance of resistor network is based on the voltage at the V_{CC} and required bias current in this resistor network.

$$
R_{\text{total}} = R3 + R4 + R5 = \text{Vcc} / I_{\text{bias}}
$$

$$
= 12 \text{ V} / 1 \propto A = 12 \text{ k}\Omega
$$

The expected voltage across R3 is Vcc- V_{ISET1} $= 12$ V - 2.87 V=9.13 V. Similarly, the voltages across R4 is V_{SOC^+} - V_{SOC^-} = 2.87 V - 1.55 V =1.32 V, and the voltage across R5 is V_{ISET2} = 1.55 V respectively.

R3 =9.13 V/
$$
I_{bias}
$$
 = 9.13kΩ
R4 =1.32 V/ I_{bias} = 1.32kΩ
R5 =1.55 V/ I_{bias} = 1.55kΩ

Choose R3= 9.09kΩ R4=1.33 kΩ, R5=1.54 kΩ from E-96 series.

Consequently, actual threshold levels are $V_{\text{SOC+}}$ =2.88 V gives $I_{\text{TRIP+}}$ = 11.2 A V_{SOC-} =1.55 V gives I_{TRIP-} = -11.0 A

Resisters with 1% tolerances are recommended.

OC Output Signal

The OC pin is a 20 V open drain output. The OC pin is pulled down to ground when an over current condition is detected. A single external pull-up resistor can be shared by multiple IRS20124 OC pins to form the ORing logic. In order for a microprocessor to read the OC signal, this information is buffered with a mono stable multi vibrator to ensure 100 ns minimum pulse width.

Because of unpredictable logic status of the OC pin, the OC signal should be ignored during power up/down.

Limitation from Body Diode in MOSFET

When a Class D stage outputs a positive current, flowing from the Class D amp to the load, the body diode of the MOSFET will turn on when the drain to source voltage of the MOSFET become larger than the diode forward drop voltage. In such a case, the sensing voltage at the V_s pin of the IRS20124 is clamped by the body diode. This means that the effective $R_{DS(ON)}$ is now much lower than expected from $R_{DS(ON)}$ of the MOSFET, and the V_s node my not able to reach the threshold to turn the OC output on before the MOSFET fails. Therefore, the region where body diode clamping takes a place should be avoided when setting V_{SOC}

Body Diode in MOSFET Clamps vs Voltage

For further application information for gate driver IC please refer to AN-978 and DT98-2a. For further application information for class D application, please refer to AN-1070 and AN-1071.

.

Case Outline

International
Tark Rectifier

Tape & Reel 14-Lead SOIC

CARRIER TAPE DIMENSION FOR 14SOICN

REEL DIMENSIONS FOR 14SO ICN

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

14-Lead SOIC IRS20124SPbF 14-Lead SOIC Tape & Reel IRS20124STRPbF

International **IQR** Rectifier SO-14 package is MSL2 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at IR's Web Site http://www.irf.com WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel:(310) 252-7105 Data and specifications subject to change without notice. 12/4/2006