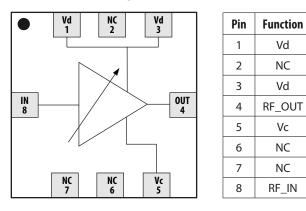

AMGP-6342

40.5 – 43.5 GHz SMT Packaged Variable Gain Amplifier

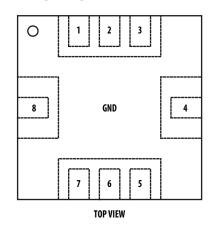

Data Sheet

Description

The AMGP-6342 is a broadband variable gain amplifier in a surface mount package designed for use in various applications such as 42 GHz Point-to-Point Radio that operate at frequencies between 40.5 GHz and 43.5 GHz. Over the frequency range it provides 25 dB of gain control with 9 dB small-signal gain and input and output 50 Ω match. OIP3 of +25 is delivered at 43 GHz.

Functional Block Diagram

Attention: Observe Precautions for handling electrostatic sensitive devices. ESD Machine Model: 40V ESD Human Body Model: 150V Refer to Avago Application Note A004R: Electrostatic Discharge Damage and Control.


Features

- 5 x 5 mm surface mount package
- RF frequency range from 40.5 to 43.5 GHz
- 9 dB Maximum Gain
- 25 dB Dynamic Range
- +25 dBm Output IP3 @ 43 GHz
- Vd = 5 V and Id = 205 mA
- -1 to 0 V Control voltage (Vc)

Applications

- Microwave Radio Systems
- Test Instrument

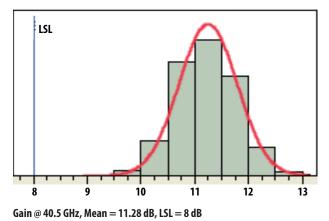
Package Diagram

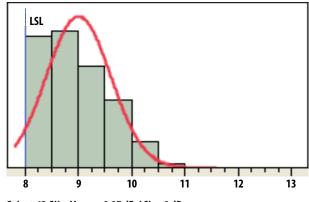
ELECTRICAL SPECIFICATIONS

Table 1. Absolute Minimum and Maximum Ratings

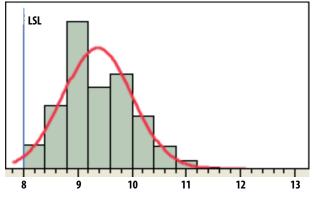
Parameter		Specificati	ons			
Description		Min.	Max.	Unit	Comments	
Drain Voltage	Vd		5.25	V		
Control Voltage	Vc	-3	+1.5	V		
CW Input Power			5	dBm		
MSL			MSL2A			
Channel Temperature			150	°C		
Storage Temperature		-45	150	°C		

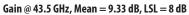
Table 2. Recommended Operating Range

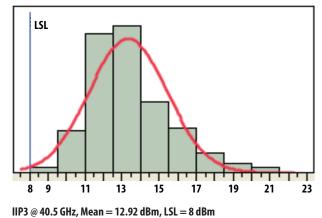

Parame	eter		Specifica	tions			
Descrip	tion	Pin	Min.	Typical	Max.	Unit	Comments
Drain V	/oltage	Vd	4.5	5.0	5.0	V	
Contro	l Voltage	Vc	-1.0		0	V	Vc = -1 V is max. gain state
Freque	ency range		40.5		43.5	GHz	
Therm	al Resistance, θ_{ch-b}			23.9		°C/W	
Case Te	emperature		-40		+85	°C	
ESD	Human Body Model			150		V	Class 0 is ESD voltage level < 250 V
	Machine Model			40		V	Class A is ESD voltage level < 200 V

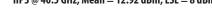

Table 3. RF Electrical Characteristics

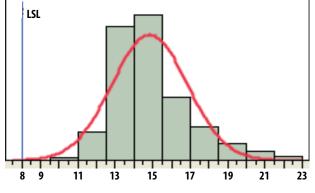
All data measured on a Rogers 4350 demo board at Vd = 5 V, $T_A = 25^{\circ}$ C and 50 Ω at all ports, unless otherwise specified.


		Performa	ance			
Parameter		Min.	Typical	Max.	Unit	Comments
Gain	40.5GHz	8	11.3		dB	Vc = -1 V
	42GHz 43.5GHz		9 9.3			
Gain Dynamic Range	40.5 – 43.5 GHz		25		dB	
Input IP3 (max. Gain)	40.5GHz 42GHz 43.5GHz	8	13 14.4 13.3		dBm	Pin = -5 dBm / Tone
Noise Figure (max. Gain)			10		dB	@ 40.5 GHz
Input Return Loss	40.5 – 43.5 GHz		10		dB	Over dynamic range
Output Return Loss	40.5 – 43.5 GHz		10		dB	Over dynamic range
Drain Current (Id)			205		mA	
Control Voltage			-1/0		V	-1 V = Max. Gain 0 V = Min. Gain
Control Current (Ic)				1	mA	


Product Consistency Distribution Charts at 40.5 GHz, 42 GHz and 43.5 GHz, Vd = 5 V, Vc = -1 V. (Sample size of 2,000 pieces)






Gain @ 42 GHz, Mean = 8.97 dB, LSL = 8 dB

IIP3 @ 42 GHz, Mean = 14.42 dBm, LSL = 8 dBm

IIP3 @ 43.5 GHz, Mean = 13.33 dBm, LSL = 8 dBm

Selected performance plots

All data measured on connectorized Rogers 4350 demo board at Vd = 5 V, $T_A = 25^{\circ}$ C and 50 Ω at all ports, unless otherwise specified.

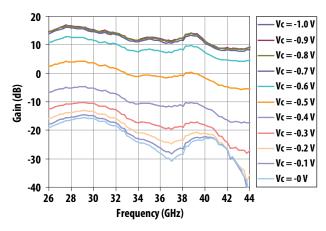


Figure 1. Broadband Gain over Gain Control Voltage Vc

Figure 3. Broadband Input Return Loss over Gain Control Voltage Vc

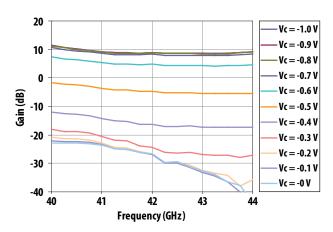


Figure 5. Gain in 40-43.5 GHz Band over Gain Control Voltage Vc

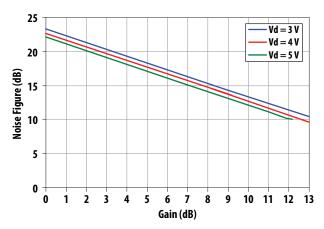


Figure 2. Noise Figure vs Gain @ 40 GHz over Vd = 3, 4 and 5 V

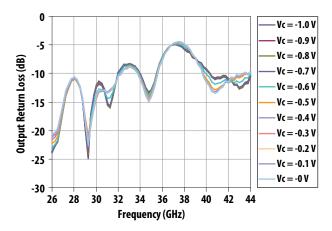


Figure 4. Broadband Output Return Loss over Gain Control Voltage Vc

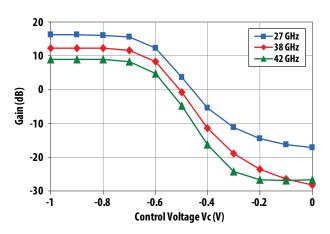


Figure 6. Gain vs Control Voltage Vc @ 27, 38 and 42 GHz

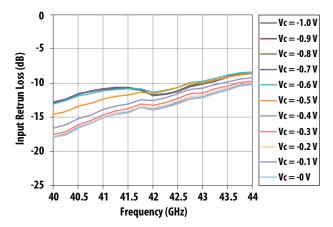


Figure 7. Input Return Loss in 40-43.5 GHz Band over Gain Control Voltage Vc

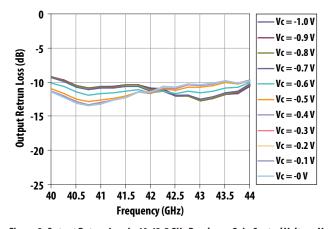


Figure 8. Output Return Loss in 40-43.5 GHz Band over Gain Control Voltage Vc

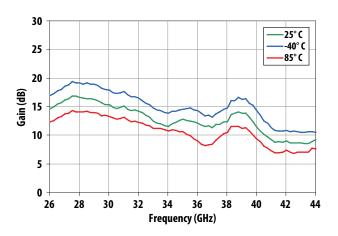


Figure 9. Broadband Gain Over Temperature

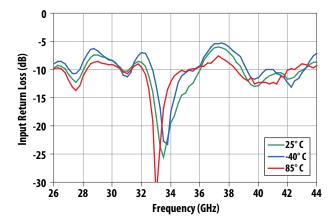


Figure 11. Broadband Input Return Loss Over Temperature

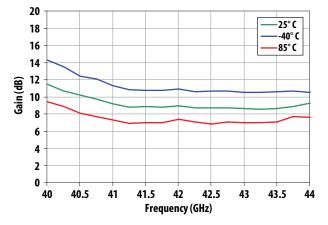


Figure 10. Gain in 40-43.5 GHz Band Over Temperature

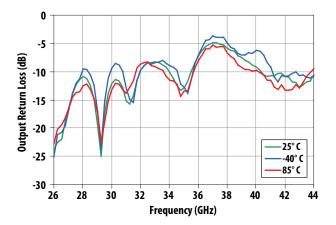
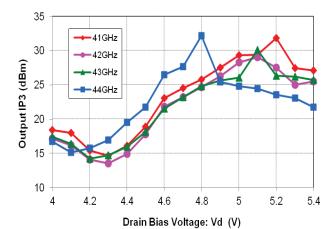



Figure 12. Broadband Output Return Loss Over Temperature

Figure 13. Broadband Gain Over Drain Bias Vd

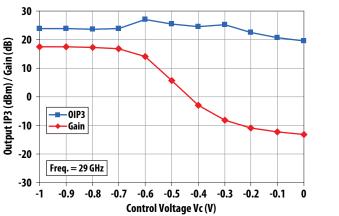


Figure 15. Output IP3 and Gain vs. Control Voltage @ 29 GHz

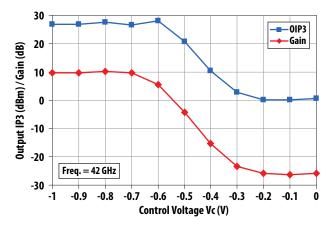


Figure 17. Output IP3 and Gain vs Control Voltage @ 42 GHz

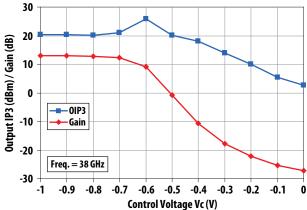


Figure 16. Output IP3 and Gain vs. Control Voltage @ 38 GHz

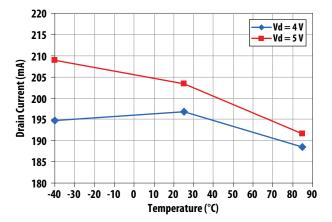
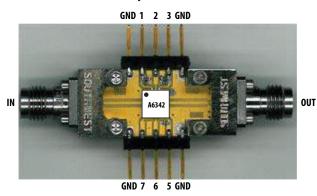



Figure 18. Drain Bias Current vs Temperature over Vd

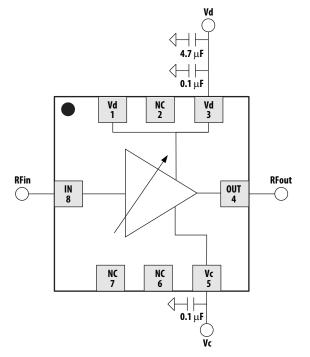

Evaluation Board Description

Table 4. Pin Description

Pin #	Function	Biasing	Comment
GND	GND		
1	Vd	5.0 V	Pins 2 & 4 are internally connected
2	NC		
3	Vd (opt)	5.0 V (opt)	Pins 2 & 4 are internally connected
GND	GND		
GND	GND		
5	Vc	-1 to 0 V	< 1 mA
6	NC		
7	NC		
GND	GND		

Demo board circuit for AMGP-6342

Note: Pins 1 and 3 are internally connected. Only either pin 2 or pin 4 should be used for Vd, not both.

Package Dimension, PCB Layout and Tape and Reel information

Please refer to Avago Technologies Application Note 5521, AMxP-xxxx production Assembly Process (Land Pattern B).

Part Number Ordering Information

	Devices per			
Part Number	Container	Container		
AMGP-6342-BLKG	10	antistatic bag		
AMGP-6342-TR1G	100	7" Reel		
AMGP-6342-TR2G	500	7" Reel		

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved. AV02-3209EN - May 10, 2012

