

NPN Darlington Power Silicon Transistor *Qualified per MIL-PRF-19500/539*

<u>Qualified Levels</u>: JAN, JANTX, and JANTXV

DESCRIPTION

This high speed NPN transistor is rated at 8 amps and is military qualified up to a JANTXV level. This TO-213AA isolated package features a 180 degree lead orientation.

TO-213AA (TO-66) Package

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N6300 and 2N6301
- Hermetically sealed
- JAN, JANTX, and JANTXV qualifications are available per MIL-PRF-19500/539
- RoHS compliant versions available (commercial grade only)

APPLICATIONS / BENEFITS

- Convenient package
- Mechanically rugged
- · Military, space and other high reliability applications

MAXIMUM RATINGS @ T_C = 25 °C unless otherwise stated

Parameters/Test Conditions		Symbol	Value	Unit
Junction and Storage Temperature		T_J and T_{STG}	-55 to +200	°C
Thermal Resistance Junction-to-Case		R _{eJC}	2.66	°C
Collector-Base Voltage	2N6300	V _{CBO}	60	V
	2N6301		80	
Collector-Emitter Voltage	2N6300	$V_{\sf CEO}$	60	V
	2N6301		80	
Emitter-Base Voltage		V_{EBO}	5	V
Continuous Operating Collector Current		Ic	8	Α
Base Current		I _B	120	mA
Total Power Dissipation (1)	@ T _C = 0 ºC	P _T	75	W
	@ T _C = 100 ^o C		37	

NOTES: 1. Derate linearly at 0.428 W/ $^{\circ}$ C above T_C > 0 $^{\circ}$ C.

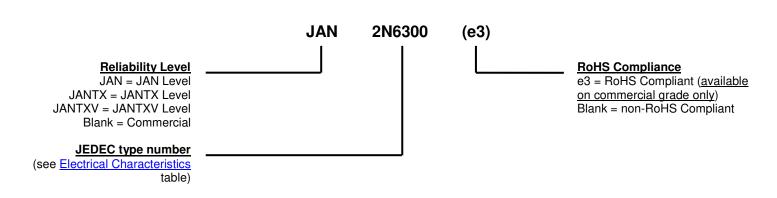
MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC - Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetic, TO-213AA package. Nickel plate with nickel cap.
- TERMINALS: Solder dipped (Sn63/Pb37) over nickel plated alloy 52. RoHS compliant matte-tin plating is also available on commercial grade only.
- MARKING: MSC, part number, date code, polarity symbol
- WEIGHT: Approximately 5.7 grams
- See Package Dimensions on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS						
Symbol	Definition					
I _B	Base current: The value of the dc current into the base terminal.					
Ic	Collector current: The value of the dc current into the collector terminal.					
Ι _Ε	Emitter current: The value of the dc current into the emitter terminal.					
T _C	Case temperature: The temperature measured at a specified location on the case of a device.					
V_{CB}	Collector-base voltage: The dc voltage between the collector and the base.					
V _{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.					
V_{CC}	Collector-supply voltage: The supply voltage applied to a circuit connected to the collector.					
V_{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.					
V _{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.					
V_{EB}	Emitter-base voltage: The dc voltage between the emitter and the base					
V_{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.					

ELECTRICAL CHARACTERISTICS @ 25 °C unless otherwise stated

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
ON CHARACTERISTICS					
Collector-Emitter Breakdown Voltage I _C = 100 mA	2N6300 2N6301	V _{(BR)CEO}	60 80		٧
Collector-Emitter Cutoff Current $V_{CE} = 60 V_{BE} = 1.5 V$ $V_{CE} = 80 V_{BE} = 1.5 V$	2N6300 2N6301	I _{CEX}		10	μΑ
Collector-Emitter Cutoff Current, Base Open $V_{CE} = 30 \text{ V}$ $V_{CE} = 40 \text{ V}$	2N6300 2N6301	I _{CEO}		0.5	mA
Emitter-Base Cutoff Current V _{EB} = 5 V		I _{EBO}		2.0	mA
Forward Current Transfer Ratio $I_C = 1 \text{ A}, V_{CE} = 3 \text{ V}$ $I_C = 4 \text{ A}, V_{CE} = 3 \text{ V}$ $I_C = 8 \text{ A}, V_{CE} = 3 \text{ V}$		h _{FE}	500 750 100	18000	
Collector-Emitter Saturation Voltage $I_C = 4.0 \text{ A}, I_B = 16 \text{ mA}$ $I_C = 8.0 \text{ A}, I_B = 80 \text{ mA}$		V _{CE(sat)}		2.0 3.0	V
Base-Emitter Saturation Voltage $V_{CE} = 3.0 \text{ V}, I_{C} = 4 \text{ A}$ $I_{C} = 8.0 \text{ A}, I_{B} = 80 \text{ mA}$		V _{BE(sat)}		2.8 4.0	V

DYNAMIC CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio $V_{CE} = 3.0 \text{ V}, I_{C} = 3.0 \text{ A}, f = 1 \text{ MHz}$	h _{fe}	25	350	
Common Emitter Small-Signal Short-Circuit Forward Current Trans-Ratio $V_{CE} = 3 \text{ V}, I_{C} = 3 \text{ A}, f = 1 \text{ kHz}$	h _{fe}	300		
Common Base Output $V_{CB} = 10 \text{ V}, I_E = 0 \text{ A}, 100 \text{ kHz} \le f \le 1 \text{ MHz}$	C _{obo}		200	pF

ELECTRICAL CHARACTERISTICS @ T_C = 25 °C unless otherwise noted. (continued)

SWITCHING CHARACTERISTICS

Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On time $V_{CC} = 30 \text{ V}, I_C = 4 \text{ A}, I_{B1} = 16 \text{ mA}$	t _{on}		2.0	μS
Turn-Off time $V_{CC} = 30 \text{ V}, I_C = 4 \text{ A}, I_{B1} = -I_{B2} = 16 \text{ mA}$	t _{off}		8.0	μS

SAFE OPERATING AREA (See Figures 1 and 2 and MIL-STD-750, Test Method 3053)

```
DC Tests
T_{C} = +25 \, ^{\circ}\text{C}, \, t = 1 \, \text{second, duty cycle} \leq 10\%
Test 1
V_{CE} = 8 \, \text{V}, \, I_{C} = 8 \, \text{A}
Test 2
V_{CE} = 20 \, \text{V}, \, I_{C} = 2.0 \, \text{A}
Test 3
V_{CE} = 60 \, \text{V}, \, I_{C} = 100 \, \text{mA} \, (2\text{N}6300)
V_{CE} = 80 \, \text{V}, \, I_{C} = 100 \, \text{mA} \, (2\text{N}6301)
```


SAFE OPERATING AREA

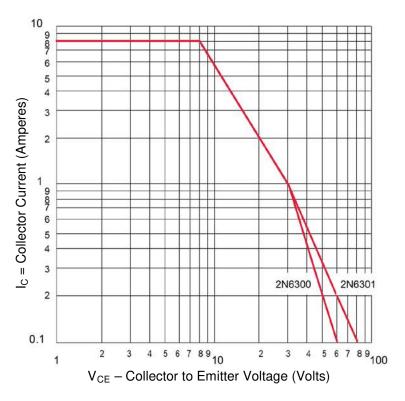


FIGURE 1 - Maximum Safe Operating Area (dc)

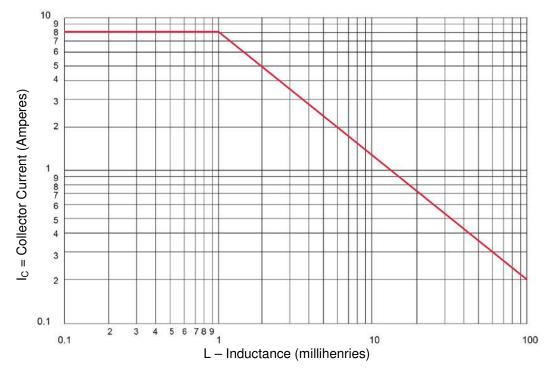
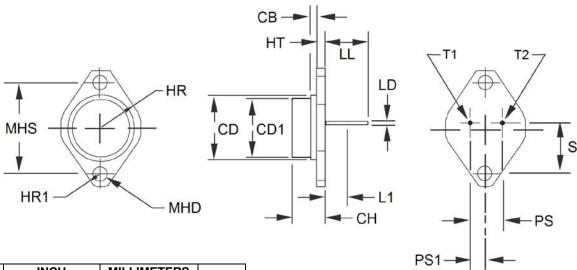
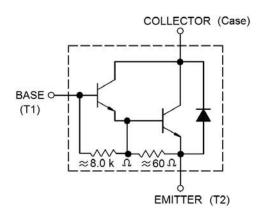



FIGURE 2 – Safe Operating Area for switching between saturation and cutoff (unclamped inductive load)

PACKAGE DIMENSIONS



DIM	INCH		MILLIN		
DIM	MIN	MAX	MIN	MAX	Notes
СВ	0.470	0.500	11.94	12.70	
CD	-	0.620	-	15.76	
CH	0.250	0.340	6.35	8.64	
HR	ı	0.350	1	8.89	
HT	0.050	0.075	1.27	1.91	
HR1	0.115	0.145	2.92	3.68	4
LD	0.028	0.034	0.71	0.86	4, 6
LL	0.360	0.500	9.14	12.70	
L1	-	0.050	-	1.27	6
MHD	0.142	0.152	3.61	3.86	4
MHS	0.958	0.962	24.33	24.43	
PS	0.190	0.210	4.83	5.33	3
PS1	0.093	0.107	2.36	2.73	3
S	0.570	0.590	14.48	14.99	
T1	Base				
T2	Emitter				
Case	Collector				

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for information only.
- These dimensions should be measured at points 0.050 inch (1.27 mm) +0.005 inch (0.13 mm) -0.000 inch (0.00 mm) below seating plane.
 When gauge is not used, measurement will be made at the seating plane.
- 4. Two places.
- The seating plane of the header shall be flat within 0.001 inch (0.03 mm) concave to 0.004 inch (0.10 mm) convex inside a 0.930 inch (23.62 mm) diameter circle on the center of the header and flat within 0.001 inch (0.03 mm) concave to 0.006 inch (0.15 mm) convex overall.
- 6. Lead diameter shall not exceed twice LD within L1.
- 7. Lead number 1 is the emitter, lead 2 is the base, case is the collector.
- 8. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.

SCHEMATIC

