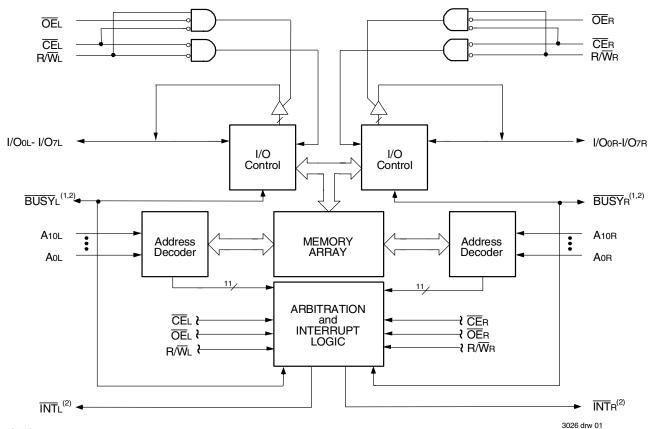


HIGH SPEED 3.3V 2K X 8 DUAL-PORT STATIC RAM WITH INTERRUPTS


IDT71V321S/L IDT71V421S/L

Features

- High-speed access
 - Commercial: 25/35/55ns (max.)
 - Industrial: 25ns (max.)
- Low-power operation
 - IDT71V321/IDT71V421S
 - Active: 325mW (typ.)
 - Standby: 5mW (typ.)
 - IDT71V321/V421L
 - Active: 325mW (typ.)
 - Standby: 1mW (typ.)
- ◆ Two INT flags for port-to-port communications
- MASTER IDT71V321 easily expands data bus width to 16or-more-bits using SLAVE IDT71V421

- On-chip port arbitration logic (IDT71V321 only)
- BUSY output flag on IDT71V321; BUSY input on IDT71V421
- Fully asynchronous operation from either port
- Battery backup operation—2V data retention (L only)
- ◆ TTL-compatible, single 3.3V power supply
- Available in 52-pin PLCC, 64-pin TQFP and STQFP packages
- Industrial temperature range (-40°C to +85°C) is available for selected speeds
- Green parts available, see ordering information

Functional Block Diagram

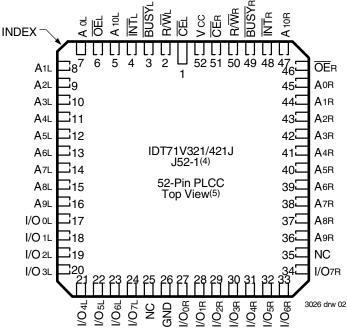
NOTES:

- 1. IDT71V321 (MASTER): BUSY is an output. IDT71V421 (SLAVE): BUSY is input.
- 2. $\overline{\text{BUSY}}$ and $\overline{\text{INT}}$ are totem-pole outputs.

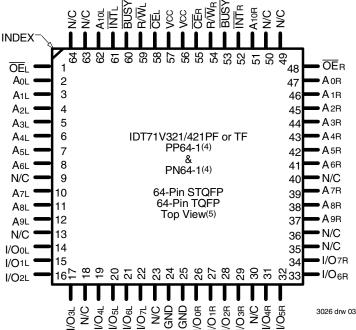
JANUARY 2010

Description

The IDT71V321/IDT71V421 are high-speed 2K x 8 Dual-Port Static RAMs with internal interrupt logic for interprocessor communications. The IDT71V321 is designed to be used as a stand-alone 8-bit Dual-Port RAM or as a "MASTER" Dual-Port RAM together with the IDT71V421 "SLAVE" Dual-Port in 16-or-more-bit memory system applications results in full speed, error-free operation without the need for additional discrete logic.


The device provides two independent ports with separate control, address, and I/O pins that permit independent, asynchronous access for reads or writes to any location in memory. An automatic power

down feature, controlled by $\overline{\text{CE}}$, permits the on chip circuitry of each port to enter a very low standby power mode.


Fabricated using IDT's CMOS high-performance technology, these devices typically operate on only 325mW of power. Low-power (L) versions offer battery backup data retention capability, with each Dual-Port typically consuming 200µW from a 2V battery.

The IDT71V321/IDT71V421 devices are packaged in a 52-pin PLCC, a 64-pin TQFP (thin quad flatpack), and a 64-pin STQFP (super thin quad flatpack).

Pin Configurations (1,2,3)

- 1. All Vcc pins must be connected to power supply.
- 2. All GND pins must be connected to ground supply
- J52-1 package body is approximately .75 in x .75 in x .17 in. PP64-1 package body is approximately 10mm x 10mm x 1.4mm. PN64-1 package body is approximately 14mm x 14mm x 1.4mm.
- 4. This package code is used to reference the package diagram.
- 5. This text does not indicate orientation of the actual part-marking.

Absolute Maximum Ratings(1)

Symbol	Rating	Commercial & Industrial	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
Та	Operating Temperature	0 to +70	°C
TBIAS	Temperature Under Bias	-55 to +125	°C
Тѕтс	Storage Temperature	-65 to +150	°C
ЮИТ	DC Output Current	50	mA

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS
 may cause permanent damage to the device. This is a stress rating only
 and functional operation of the device at these or any other conditions
 above those indicated in the operational sections of the specification is not
 implied. Exposure to absolute maximum rating conditions for extended
 periods may affect reliability.
- 2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to \leq 20mA for the period of VTERM \geq Vcc + 10%.

Capacitance⁽¹⁾

(TA = +25°C, f = 1.0MHz) TQFP Only

Symbol	Parameter	Parameter Conditions ⁽²⁾			
CIN	Input Capacitance	VIN = 3dV	9	pF	
Соит	Output Capacitance	Vout = 3dV	10	pF	

NOTES:

- This parameter is determined by device characterization but is not production tested.
- 3dv references the interpolated capacitance when the input and output signals switch from 0V to 3V or from 3V to 0V.

Recommended Operating Temperature and Supply Voltage^(1,2)

Grade	Ambient Temperature		Vcc		
Commercial	0°C to +70°C	0V	3.3V <u>+</u> 0.3V		
Industrial	-40°C to +85°C	0V	3.3V <u>+</u> 0.3V		

3026 tbl 02

3026 tbl 03

NOTES:

- 1. This is the parameter TA. This is the "instant on" case temperature.
- Industrial temperature: for specific speeds, packages and powers contact your sales office.

Recommended DC Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	3.0	3.3	3.6	٧
GND	Ground	0	0	0	٧
Vн	Input High Voltage	2.0	_	VCC+0.3 ⁽²⁾	٧
VIL	Input Low Voltage	-0.3 ⁽¹⁾	_	0.8	V

NOTES

- 1. VIL (min.) = -1.5V for pulse width less than 20ns.
- 2. VTERM must not exceed Vcc + 0.3V.

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range (Vcc = 3.3V ± 0.3V)

			71V321S 71V421S		71V: 71V		
Symbol	Parameter	Test Conditions	Min.	Max.	Min.	Max.	Unit
IILII	Input Leakage Current ⁽¹⁾	Vcc = 3.6V, VIN = 0V to Vcc	_	10	_	5	μA
llrol	Output Leakage Current	$\overline{\overline{CE}}$ = ViH, Vout = 0V to Vcc Vcc = 3.6V	_	10	_	5	μA
Vol	Output Low Voltage	IoL = 4mA	_	0.4	_	0.4	V
Vон	Output High Voltage	IOH = -4mA	2.4	_	2.4	_	٧

3026 tbl 04

NOTE

1. At $Vcc \le 2.0V$ input leakages are undefined.

3026 tbl 05

DC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range $^{(1,2)}$ (Vcc = 3.3V ± 0.3V)

					71V4	21X25 21X25 & Ind	71V4	21X35 21X35 & Ind		21X55 21X55	
Symbol	Parameter	Test Condition	Versio	n	Тур.	Max.	Тур.	Max.	Тур.	Max.	Unit
lcc	Dynamic Operating Current (Both Ports Active)	CE = VIL, Outputs Disabled SEM = VIH f = fMAX ⁽³⁾	COM'L	S L	55 55	130 100	55 55	125 95	55 55	115 85	mA
	(DOTT TOTIS ACTIVE)	I = IMAX''	IND	L	55	130	55	125	_	_	
ISB1	Standby Current (Both Ports - TTL	$\overline{\underline{CE}}_R = \overline{\underline{CE}}_L = V_{IH}$ $\overline{\underline{SEM}}_R = \overline{\underline{SEM}}_L = V_{IH}$ $f = f_{MAX}^{(3)}$	COM'L	SL	15 15	35 20	15 15	35 20	15 15	35 20	mA
	Level Inputs)		IND	L	15	35	15	35	_	_	
ISB2	Standby Current (One Port - TTL Level Inputs)	$\overline{\text{CE}}$ "A" = VIL and $\overline{\text{CE}}$ "B" = VIH ⁽⁵⁾ Active Port Outputs Disabled, f=fmax ⁽³⁾	COM'L	S L	25 25	75 55	25 25	70 50	25 25	60 40	mA
	Lever iripuis)	$\frac{\text{SEMR}}{\text{SEMR}} = \frac{\text{SEML}}{\text{SEML}} = \text{Vih}$	IND	L	25	75	25	70	_	_	
ISB3	Full Standby Current (Both Ports - All CMOS Level Inputs)	Both Ports CEL and CER ≥ Vcc - 0.2V Vin > Vcc - 0.2V or	COM'L	SL	1.0 0.2	5 3	1.0 0.2	5 3	1.0 0.2	5 3	mA
	,	$\frac{V_{IN} \le 0.2V, f = 0^{(4)}}{SEMR = SEML \ge Vcc - 0.2V}$	IND	L	0.2	6	1.0	5	_		
ISB4	Full Standby Current (One Port - All CMOS Level Inputs)	$\overline{\underline{CE}}^{\text{-A'}} \leq 0.2V$ and $\overline{\underline{CE}}^{\text{-B'}} \geq V_{\text{CC}} - 0.2V^{(5)}$ $\overline{\text{SEMR}} = \overline{\text{SEML}} \geq V_{\text{CC}} - 0.2V$	COM'L	S L	25 25	70 55	25 25	65 50	25 25	55 40	mA
	TOWOO Level IIIpuis)	Vin \geq Vcc - 0.2V Vin \geq Vcc - 0.2V or Vin \leq 0.2V Active Port Outputs Disabled $f = fmax^{(3)}$	IND	Г	25	70	25	65		_	

3026 tbl 06

NOTES:

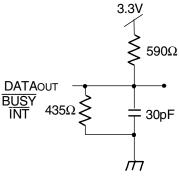
- 1. 'X' in part numbers indicates power rating (S or L).
- 2. Vcc = 3.3V, TA = +25°C, and are not production tested. Iccpc = 70mA (Typ.).
- 3. At f = fmax, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tnc and using "AC Test Conditions" of input levels of GND to 3V.
- 4. f = 0 means no address or control lines change. Applies only to inputs at CMOS level standby.
- 5. Port "A" may be either left or right port. Port "B" is opposite from port "A".

Data Retention Characteristics (L Version Only)

Symbol	Parameter	Test Condition		Min.	Typ. ⁽¹⁾	Max.	Unit
VDR	VCC for Data Retention			2.0	_	0	V
ICCDR	Data Retention Current	Vcc = 2v, CE ≥ Vcc - 0.2V	COM'L.	_	100	500	μA
tcdr ⁽³⁾	Chip Deselect to Data	VIN ≥ VCC - 0.2V or VIN ≤ 0.2V	IND.	_	100	1000	μA
	Retention Time			0	_	_	V
tR ⁽³⁾	Operation Recovery Time			tRC ⁽²⁾	_	_	V

NOTES:

- 1. Vcc = 2V, TA = +25°C, and is not production tested.
- 2. tRC = Read Cycle Time.
- 3. This parameter is guaranteed by device characterization but not production tested.


3026 tbl 07

AC Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
Output Load	Figures 1 and 2

Data Retention Waveform

3026 tbl 08

Figure 1. AC Output Test Load

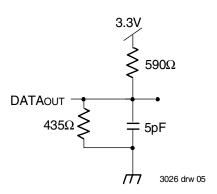
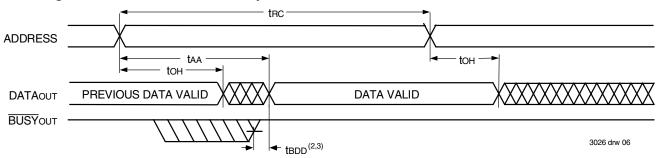


Figure 2. Output Test Load (for thz, tLz, twz, and tow)
* Including scope and jig.

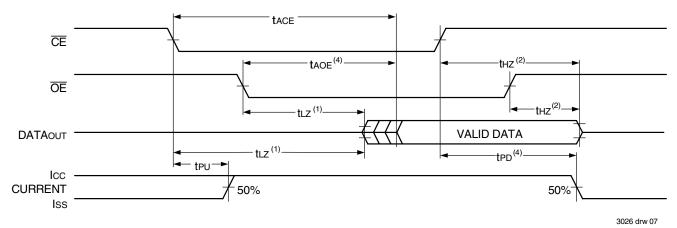
AC Electrical Characteristics Over the Operating Temperature Supply Voltage Range (2)


		71V321X25 71V421X25 Com'l & Ind		71V321X35 71V421X35 Com'l & Ind		71V321X55 71V421X55			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit	
READ CYCLE									
trc	Read Cycle Time	25	_	35	_	55	_	ns	
taa	Address Access Time	_	25	_	35	_	55	ns	
tace	Chip Enable Access Time	_	25	_	35	_	55	ns	
taoe	Output Enable Access Time		12		20	_	25	ns	
tон	Output Hold from Address Change	3	_	3	_	3	_	ns	
t_z	Output Low-Z Time ^(1,2)	0	_	0	_	0	_	ns	
tHZ	Output High-Z Time ^(1,2)	_	12	_	15	_	30	ns	
tPU	Chip Enable to Power Up Time ⁽²⁾	0	_	0		0	_	ns	
tPD	Chip Disable to Power Down Time ⁽²⁾	_	50	_	50	_	50	ns	

NOTES:

- 1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).
- 2. This parameter is guaranteed by device characterization, but is not production tested.
- 3. 'X' in part numbers indicates power rating (S or L).

3026 tbl 09

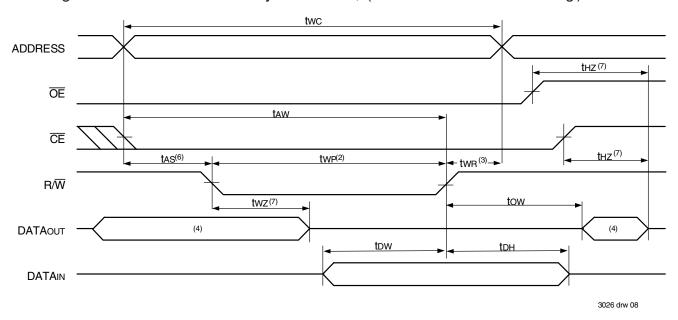

Timing Waveform of Read Cycle No. 1, Either Side(1)

NOTES:

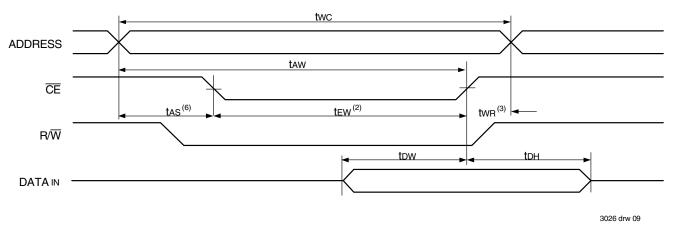
- 1. $R\overline{W} = V_{IH}$, $\overline{CE} = V_{IL}$, and is $\overline{OE} = V_{IL}$. Address is valid prior to the coincidental with \overline{CE} transition LOW.
- 2. tedd delay is required only in the case where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY has no relationship to valid output data.
- 3. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA, and tBDD.

Timing Waveform of Read Cycle No. 2, Either Side (3)

- 1. Timing depends on which signal is asserted last, $\overline{\text{OE}}$ or $\overline{\text{CE}}$.
- 2. Timing depends on which signal is de-asserted first, $\overline{\text{OE}}$ or $\overline{\text{CE}}$.
- 3. $R\overline{W} = VIH$ and the address is valid prior to or coincidental with \overline{CE} transition LOW.
- 4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA, and tBDD.


AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁴⁾

		71V321X25 71V421X25 Com'l & Ind		71V321X35 71V421X35 Com'l & Ind		71V321X55 71V421X55		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE CY	CLE							
twc	Write Cycle Time ⁽⁵⁾	25	_	35	_	55	_	ns
tew	Chip Enable to End-of-Write	20	_	30	_	40	_	ns
taw	Address Valid to End-of-Write	20	_	30	_	40	_	ns
tas	Address Set-up Time	0	_	0	_	0	_	ns
twp	Write Pulse Width	20	_	30	_	40	_	ns
twr	Write Recovery Time	0	-	0	_	0	_	ns
tow	Data Valid to End-of-Write	12	_	20	_	20	_	ns
tHZ	Output High-Z Time ^(1,2)		12		15	_	30	ns
tDH	Data Hold Time ⁽³⁾	0	_	0	_	0	_	ns
twz	Write Enable to Output in High-Z ^(1,2)	Ī	15	_	15	_	30	ns
tow	Output Active from End-of-Write (1,2)	0	_	0	_	0	_	ns

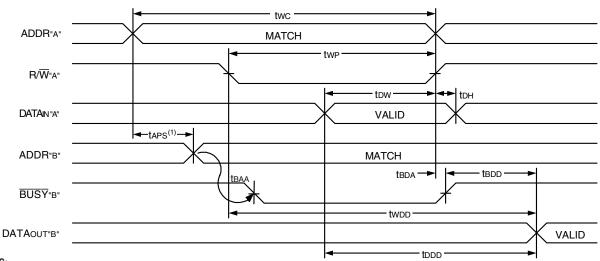

NOTES: 3026 tbl 10

- 1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).
- 2. This parameter is guaranteed by device characterization but is not production tested.
- 3. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tow values will vary over voltage and temperature, the actual tDH will always be smaller than the actual tow.
- 4. 'X' in part numbers indicates power rating (S or L).
- 5. For Master/Slave combination, two = tbaa + twp, since $R/\overline{W} = V_{IL}$ must occur after tbaa.

Timing Waveform of Write Cycle No. 1, (R/W Controlled Timing)(1,5,8)

Timing Waveform of Write Cycle No. 2, (**CE** Controlled Timing)^(1,5)

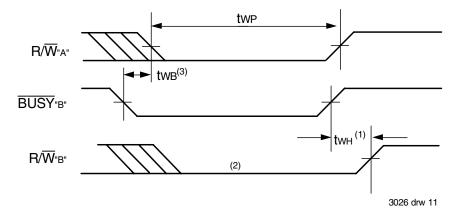
- 1. RW or CE must be HIGH during all address transitions.
- 2. A write occurs during the overlap (tew or twp) of \overline{CE} = V_{IL} and R/W= V_{IL}.
- 3. twn is measured from the earlier of $\overline{\text{CE}}$ or R/\overline{W} going HIGH to the end of the write cycle.
- 4. During this period, the I/O pins are in the output state and input signals must not be applied.
- 5. If the $\overline{\text{CE}}$ LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.
- 6. Timing depends on which enable signal (\overline{CE} or R/\overline{W}) is asserted last.
- 7. This parameter is determined to be device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure 2).
- 8. If \overline{OE} is LOW during a R/W controlled write cycle, the write pulse width must be the larger of twp or (twz + tow) to allow the I/O drivers to turn off data to be placed on the bus for the required tow. If \overline{OE} is HIGH during a R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.


AC Electrical Characteristics Over the Operating Temperature and Supply Voltage Range⁽⁶⁾

		71V321X25 71V421X25 Com'l & Ind		71V321X35 71V421X35 Com'l & Ind		71V321X55 71V421X55				
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit		
BUSY Tim	BUSY Timing (For Master IDT71V321 Only)									
tваа	BUSY Access Time from Address		20	ĺ	20		30	ns		
t BDA	BUSY Disable Time from Address		20		20		30	ns		
tBAC	BUSY Access Time from Chip Enable		20	_	20	_	30	ns		
tBDC	BUSY Disable Time from Chip Enable		20	_	20	_	30	ns		
twn	Write Hold After BUSY ⁽⁵⁾	12	_	15	_	20	_	ns		
twdd	Write Pulse to Data Delay ⁽¹⁾		50	_	60	_	80	ns		
todo	Write Data Valid to Read Data Delay ⁽¹⁾		35	-	45	_	65	ns		
taps	Arbitration Priority Set-up Time ⁽²⁾	5		5	_	5	_	ns		
tBDD	BUSY Disable to Valid Data ⁽³⁾		30	ĺ	30		45	ns		
BUSY Tim	ing (For Slave IDT71V421 Only)									
twB	BUSY Input to Write ⁽⁴⁾	0		0		0	_	ns		
twн	Write Hold After BUSY ⁽⁵⁾	12		15	_	20	_	ns		
twdd	Write Pulse to Data Delay ⁽¹⁾		50	Ī	60		80	ns		
todo	Write Data Valid to Read Data Delay ⁽¹⁾		35	_	45	_	65	ns		

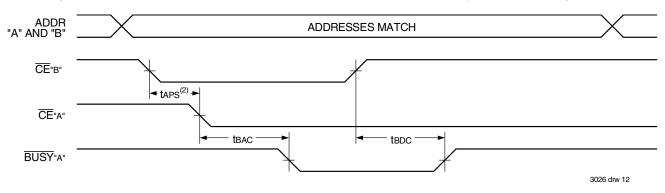
NOTES:

- 3026 tbl 11 1. Port-to-port delay through RAM cells from the writing port to the reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY."
- 2. To ensure that the earlier of the two ports wins.
- 3. tbdd is a calculated parameter and is the greater of 0, twdd twp (actual) or tddd tdw (actual).
- 4. To ensure that a write cycle is inhibited on port "B" during contention on port "A".
- 5. To ensure that a write cycle is completed on port "B" after contention on port "A".
- 6. 'X' in part numbers indicates power rating (S or L).


Timing Waveform of Write with Port-to-Port Read and **BUSY**(2,3,4)

- 1. To ensure that the earlier of the two ports wins. taps is ignored for SLAVE (71V421).
- 2. $\overline{CE}L = \overline{CE}R = VIL$
- 3. $\overline{OE} = V_{IL}$ for the reading port.
- 4. All timing is the same for the left and right ports. Port "A" may be either the left or right port. Port "B" is opposite from port "A".

3026 drw 10


Timing Waveform of Write with **BUSY**(4)

NOTES:

- 1. twH must be met for both BUSY input (71V421, slave) or output (71V321, master).
- 2. \overline{BUSY} is asserted on port 'B' blocking R/ \overline{W} 'B', until \overline{BUSY} 'B' goes HIGH.
- 3. twb is for the slave version (71V421).
- 4. All timing is the same for the left and right ports. Port "A" may be either the left or right port. Port "B" is oppsite from port "A".

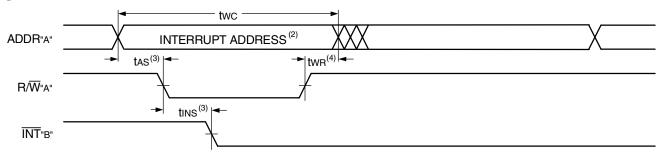
Timing Waveform of **BUSY** Arbitration Controlled by **CE** Timing⁽¹⁾

Timing Waveform of $\overline{\textbf{BUSY}}$ Arbritration Controlled by Address Match Timing⁽¹⁾

- 1. All timing is the same for left and right ports. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 2. If taps is not satisified, the BUSY will be asserted on one side or the other, but there is no guarantee on which side BUSY will be asserted (71V321 only).

AC Electrical Characteristics Over the

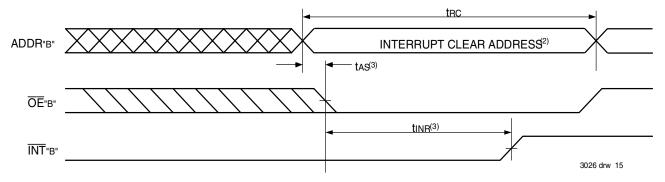
Operating Temperature and Supply Voltage Range⁽¹⁾


		71V321X25 71V421X25 Com'l & Ind		71V321X35 71V421X35 Com'l & Ind		71V321X55 71V421X55					
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit			
INTERRUP	INTERRUPT TIMING										
tas	Address Set-up Time	0	_	0	_	0	_	ns			
twn	Write Recovery Time	0	_	0		0	_	ns			
tins	Interrupt Set Time	_	25	_	25	_	45	ns			
tinr	Interrupt Reset Time	_	25		25		45	ns			

NOTES:

1. 'X' in part numbers indicates power rating (S or L).

Timing Waveform of Interrupt Mode⁽¹⁾


SET INT

3026 drw 14

3026 tbl 12

CLEAR INT

- 1. All timing is the same for left and right ports. Port "A" may be either left or right port. Port "B" is the opposite from port "A".
- 2. See Interrupt Truth Table.
- 3. Timing depends on which enable signal $(\overline{CE} \text{ or } R\overline{W})$ is asserted last. 4. Timing depends on which enable signal $(\overline{CE} \text{ or } R\overline{W})$ is de-asserted first.

Truth Tables

Table I — Non-Contention Read/Write Control⁽⁴⁾

Left or Right Port ⁽¹⁾				
R/W	ĊΕ	Œ	D 0-7	Function
Х	Н	Х	Z	Port Deselected and in Power- Down Mode. ISB2 or ISB4
Х	H	Χ	Z	$\overline{CER} = \overline{CEL} = VIH$, Power-Down Mode ISB1 or ISB3
L	L	Х	DATAIN	Data on Port Written Into Memory ⁽²⁾
Н	L	L	DATAOUT	Data in Memory Output on Port ⁽³⁾
Н	L	Ι	Z	High-impedance Outputs

NOTES:

3026 tbl 13

- 1. $A_{0L} A_{10L} \neq A_{0R} A_{10R}$.
- 2. If $\overline{BUSY} = L$, data is not written.
- 3. If \overline{BUSY} = L, data may not be valid, see two and too timing.
- 4. 'H' = VIH, 'L' = VIL, 'X' = DON'T CARE, 'Z' = High-impedance.

Table II — Interrupt Flag^(1,4)

Left Port				Right Port						
R/WL	CEL	ŌĒL	A10L-A0L	ĪNT∟	R/WR	CER	ŌĒ R	A10R-A0R	ĪÑĪR	Function
L	L	Х	7FF	Х	Х	Х	Х	Х	L ⁽²⁾	Set Right INTR Flag
Х	Х	Х	Х	Х	Х	L	L	7FF	H ⁽³⁾	Reset Right INTR Flag
Х	Х	Х	Х	L ⁽³⁾	L	L	Х	7FE	Х	Set Left INTL Flag
Х	L	L	7FE	H ⁽²⁾	Х	Х	Х	Х	Х	Reset Left INTL Flag

NOTES:

3026 tbl 14

- 1. Assumes $\overline{BUSY}L = \overline{BUSY}R = VIH$
- 2. If $\overline{BUSY}L = VIL$, then No Change.
- 3. If $\overline{BUSYR} = VIL$, then No Change.
- 4. 'H' = HIGH, 'L' = LOW, 'X' = DON'T CARE

Table III — Address **BUSY** Arbitration

	In	puts	Out	puts	
CEL	ՇĒ R	AOL-A10L AOR-A10R	BUS YL(1)	BUSYR ⁽¹⁾	Function
Х	Х	NO MATCH	Н	Н	Normal
Н	Х	MATCH	Н	Н	Normal
Х	Н	MATCH	Н	Н	Normal
L	L	MATCH	(2)	(2)	Write Inhibit ⁽³⁾

3026 tbl 15

- Pins BUSYL and BUSYR are both outputs for IDT71V321 (master). Both are inputs for IDT71V421 (slave). BUSYx outputs on the IDT71V321 are totem-pole. On slaves the BUSYx input internally inhibits writes.
- 'L' if the inputs to the opposite port were stable prior to the address and enable inputs of this port. 'H' if the inputs to the opposite port became stable after the address and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.
- Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored when BUSYR outputs are driving LOW regardless of actual logic level on the pin.

Functional Description

The IDT7V1321/IDT71V421 provides two ports with separate control, address and I/O pins that permit independent access for reads or writes to any location in memory. The IDT71V321/IDT71V421 has an automatic power down feature controlled by $\overline{\text{CE}}$. The $\overline{\text{CE}}$ controls on-chip power down circuitry that permits the respective port to go into a standby mode when not selected ($\overline{\text{CE}} = \text{V}_{\text{IH}}$). When a port is enabled, access to the entire memory array is permitted.

Interrupts

If the user chooses the interrupt function, a memory location (mail box or message center) is assigned to each port. The left port interrupt flag ($\overline{\text{INT}}_{\text{L}}$) is asserted when the right port writes to memory location 7FE (HEX), where a write is defined as the $\overline{\text{CE}}_{\text{R}} = \text{R}/\overline{\text{W}}_{\text{R}} = \text{V}_{\text{L}}$ per Truth Table II. The left port clears the interrupt by accessing address location 7FE when $\overline{\text{CE}}_{\text{L}} = \overline{\text{OE}}_{\text{L}} = \text{V}_{\text{L}}$, R/W is a "don't care". Likewise, the right port interrupt flag ($\overline{\text{INT}}_{\text{R}}$) is asserted when the left port writes to memory location 7FF (HEX) and to clear the interrupt flag ($\overline{\text{INT}}_{\text{R}}$), the right port must access the memory location 7FF. The message (8 bits) at 7FE or 7FF is user-defined, since it is an addressable SRAM location. If the interrupt function is not used, address locations 7FE and 7FF are not used as mail boxes, but as part of the random access memory. Refer to Truth Table II for the interrupt operation.

Busy Logic

Busy Logic provides a hardware indication that both ports of the RAM have accessed the same location at the same time. It also allows one of the two accesses to proceed and signals the other side that the RAM is "Busy". The $\overline{\text{BUSY}}$ pin can then be used to stall the access until the operation on the other side is completed. If a write operation has been attempted from the side that receives a busy indication, the write signal is gated internally to prevent the write from proceeding.

The use of \overline{BUSY} Logic is not required or desirable for all applications. In some cases it may be useful to logically OR the \overline{BUSY} outputs together and use any \overline{BUSY} indication as an interrupt source to flag the event of an illegal or illogical operation.

The BUSY outputs on the IDT71V321 RAM master are to tem-pole type outputs and do not require pull-up resistors to operate. If these RAMs are

being expanded in depth, then the BUSY indication for the resulting array requires the use of an external AND gate.

Width Expansion with Busy Logic Master/Slave Arrays

When expanding an SRAM array in width while using \overline{BUSY} logic, one master part is used to decide which side of the SRAM array will receive a \overline{BUSY} indication. Any number of slaves to be addressed in the same address range as the master, use the \overline{BUSY} signal as a write inhibit signal. Thus on the IDT71V321/IDT71V421 SRAMs the \overline{BUSY} pin is an output if the part is Master (IDT71V321), and the \overline{BUSY} pin is an input if the part is a Slave (IDT71V421) as shown in Figure 3.

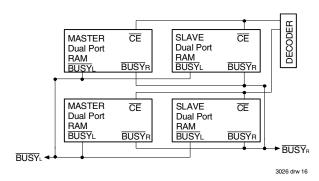
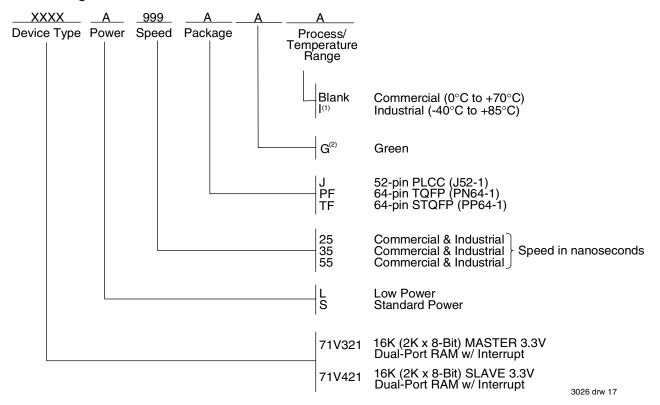



Figure 3. Busy and chip enable routing for both width and depth expansion with IDT71V321 (Master) and (Slave) IDT71V421 RAMs.

If two or more master parts were used when expanding in width, a split decision could result with one master indicating \overline{BUSY} on one side of the array and another master indicating \overline{BUSY} on one other side of the array. This would inhibit the write operations from one port for part of a word and inhibit the write operations from the other port for the other part of the word.

The \overline{BUSY} arbitration, on a Master, is based on the chip enable and address signals only. It ignores whether an access is a read or write. In a master/slave array, both address and chip enable must be valid long enough for a \overline{BUSY} flag to be output from the master before the actual write pulse can be initiated with either the \overline{RW} signal or the byte enables. Failure to observe this timing can result in a glitched internal write inhibit signal and corrupted data in the slave.

Ordering Information

NOTES:

- 1. Contact your sales office Industrial temperature range is available for selected speeds, packages and powers.
- 2. Green parts available. For specific speeds, packages and powers contact your local sales office.

Datasheet Document History

03/24/99:		Initiated datasheet document history
		Converted to new format
		Cosmetic and typographical corrections
	Page 2	Added additional notes to pin configurations
06/15/99:		Changed drawing format
10/15/99:	Page 12	Changed open drain to totem-pole in Table III, note 1
10/21/99:	Page 13	Deleted 'does not' in copy from Busy Logic
11/12/99:	•	Replaced IDT logo
01/12/01:	Pages 1 & 2	Moved full "Description" to page 2 and adjusted page layouts
	Page 3	Increased storage temperature parameters
	Ū	Clarified Taparameter
	Page 4	DC Electrical parameters-changed wording from "open" to "disabled"
	Ü	Changed ±200mV to 0mV in notes
08/22/01:	Pages 4, 5, 7,	Industrial temp range offering removed from DC & AC Electrical Characteristics for 35 and 55ns
	9 & 11	, , , , ,
01/17/06:	Page 1	Added green availability to features
	Page 14	Added green indicator to ordering information
	Page 1 & 14	Replaced old IDT™ with new IDT™ logo
	5	Datasheet document history continued on page 15

Datasheet Document History (con't)

08/25/06: Page 11 Changed INT"A" to INT"B" in the CLEAR INT drawing in the Timing Waveform of Interrupt Mode

10/23/08: Page 14 Removed "IDT" from orderable part number

01/25/10: Page 4 In order to correct the DC Chars table for the 71V321/71V421L35 speed grade and the Data Retention Chars

table, I Temp values have been added to each table respectively. In addition, all of the AC Chars tables and the

ordering information also now reflect this I temp correction

CORPORATE HEADQUARTERS

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES:

800-345-7015 or 408-284-8200 fax: 408-284-2775

www.idt.com

for Tech Support: 408-284-2794 DualPortHelp@idt.com