
BOURNS®

- Designed for Complementary Use with BDX54, BDX54A, BDX54B and BDX54C
- 60 W at 25°C Case Temperature
- 8 A Continuous Collector Current
- Minimum h_{FE} of 750 at 3V, 3 A

MDTRACA

This series is obsolete and not recommended for new designs.

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT		
	BDX53		45		
Collector-base voltage (I _E = 0)	BDX53A	V	60	V	
	BDX53B	V _{СВО}	80	v	
	BDX53C		100		
	BDX53		45		
Collector-emitter voltage (I _B = 0)	BDX53A	V _{CEO}	60	V	
	BDX53B		80		
	BDX53C		100		
Emitter-base voltage		V _{EBO}	5	V	
Continuous collector current		I _C	8	Α	
Continuous base current		I _B	0.2	Α	
Continuous device dissipation at (or below) 25°C case temperature (see Note 1)	P _{tot}	60	W		
Continuous device dissipation at (or below) 25°C free air temperature (see Note	P _{tot}	2	W		
Operating junction temperature range	T _j	-65 to +150	ç		
Operating temperature range	T _{stg}	-65 to +150	°C		
Operating free-air temperature range	T _A	-65 to +150	°C		

NOTES: 1. Derate linearly to 150°C case temperature at the rate of 0.48 W/°C.

2. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS				MIN	TYP	MAX	UNIT
V _{(BR)CEO}	Collector-emitter breakdown voltage	I _C = 100 mA	I _B = 0	(see Note 3)	BDX53 BDX53A BDX53B BDX53C	45 60 80 100			V
I _{CEO}	Collector-emitter cut-off current	$V_{CE} = 30 \text{ V}$ $V_{CE} = 30 \text{ V}$ $V_{CE} = 40 \text{ V}$ $V_{CE} = 50 \text{ V}$	$I_{B} = 0$ $I_{B} = 0$ $I_{B} = 0$ $I_{B} = 0$		BDX53 BDX53A BDX53B BDX53C			0.5 0.5 0.5 0.5	mA
I _{CBO}	Collector cut-off current	$V_{CB} = 45 \text{ V}$ $V_{CB} = 60 \text{ V}$ $V_{CB} = 80 \text{ V}$ $V_{CB} = 100 \text{ V}$	$I_{E} = 0$ $I_{E} = 0$ $I_{E} = 0$ $I_{E} = 0$		BDX53 BDX53A BDX53B BDX53C			0.2 0.2 0.2 0.2	mA
I _{EBO}	Emitter cut-off current	V _{EB} = 5 V	I _C = 0					2	mA
h _{FE}	Forward current transfer ratio	V _{CE} = 3 V	I _C = 3 A	(see Notes 3 and 4)		750			
V _{BE(sat)}	Base-emitter saturation voltage	I _B = 12 mA	I _C = 3 A	(see Notes 3 and 4)				2.5	V
V _{CE(sat)}	Collector-emitter saturation voltage	I _B = 12 mA	I _C = 3 A	(see Notes 3 and 4)		7		2	٧
V _{EC}	Parallel diode forward voltage	I _E = 3 A	I _B = 0					2.5	V

NOTES: 3. These parameters must be measured using pulse techniques, t₀ = 300 µs, duty cycle ≤ 2%.

thermal characteristics

	PARAMETER	MIN	TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			2.08	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †				TYP	MAX	UNIT
t _{on}	Turn-on time	I _C = 3 A	$I_{B(on)} = 12 \text{ mA}$	$I_{B(off)} = -12 \text{ mA}$		1		μs
t _{off}	Turn-off time	$V_{BE(off)} = -4.5 \text{ V}$	$R_L = 10 \Omega$	$t_p = 20 \ \mu s, \ dc \le 2\%$		5		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

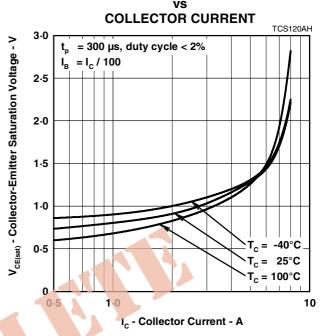
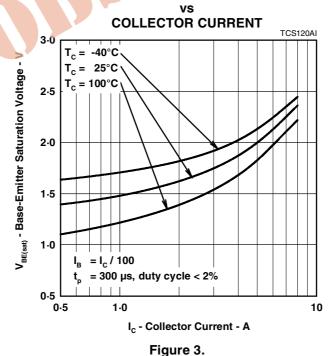
^{4.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

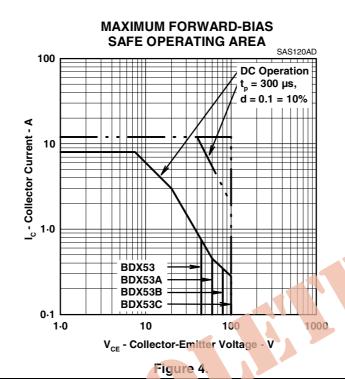
TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN vs **COLLECTOR CURRENT** TCS120AG 40000 $T_c = -40^{\circ}C$ 25°C $T_c = 100$ °C h_{FE} - Typical DC Current Gain 10000 1000 3 V = 300 μs, duty cycle < 2% 100 0.5 1.0 10 I_c - Collector Current - A

Figure 1.

COLLECTOR-EMITTER SATURATION VOLTAGE


Figure 2.

BASE-EMITTER SATURATION VOLTAGE

PRODUCT INFORMATION

MAXIMUM SAFE OPERATING REGIONS

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

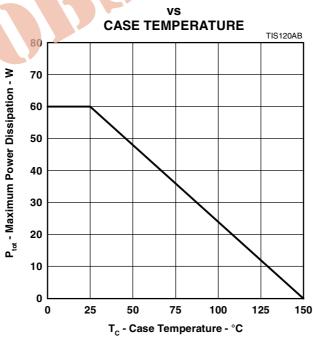


Figure 5.

PRODUCT INFORMATION