

Current Transducer LT 1005-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current			1000			Α
I _P	Primary current, measuring range			0 ± 2000			Α
$\dot{\mathbf{R}}_{_{\mathrm{M}}}$	Measuring resistance @		T _ =	70°C	T ,	= 85°C	;
IVI			R _{M mi}	$\mathbf{R}_{M\;max}$	R _{M mi}	$_{n}\mathbf{R}_{_{ ext{M max}}}$	
	with ± 15 V	@ \pm 1000 A _{max}	0	22.5	0	18.5	Ω
		@ ± 1200 A max	0	11	0	8	Ω
	with ± 24 V	@ ± 1000 A _{max}	0	65	0	62	Ω
		@ ± 2000 A max	0	10	0	7	Ω
I _{SN}	Secondary nominal r.m.s.	current		200)		mΑ
K _N	Conversion ratio			1:	5000		
V _C	Supply voltage (± 5 %)			± 15 24			V
I Č	Current consumption			$30 (@ \pm 24 V) + I_s mA$			
Λ ^q	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		nn	6		3	kV
V _b	R.m.s. rated voltage 1), sa	R.m.s. rated voltage ¹⁾ , safe separation		175	50		V
5	-	basic isolation		350	00		V

Accuracy - Dynamic performance data								
\mathbf{E}_{L}^{G}	Overall accuracy @ $\mathbf{I}_{PN,}$ \mathbf{T}_{A} = 25°C Linearity		± 0.4 < 0.1		% %			
I _о	Offset current @ $\mathbf{I}_{\rm p}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$	- 10°C + 85°C		Max ± 0.4 ± 0.5	mA mA			
t _r di/dt f	Response time ²⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	50	μs Α/μs kHz			

General data							
T _A	Ambient operating temperature		- 10 + 85	°C			
	Ambient storage temperature		- 25 + 100	°C			
T _s R _s	Secondary coil resistance @	$T_A = 70$ °C	43	Ω			
0		$\mathbf{T}_{\Delta}^{\prime} = 85^{\circ}\mathrm{C}$	46	Ω			
m	Mass	7	550	g			
	Standards		EN 50178: 1997				

1000 A

Features

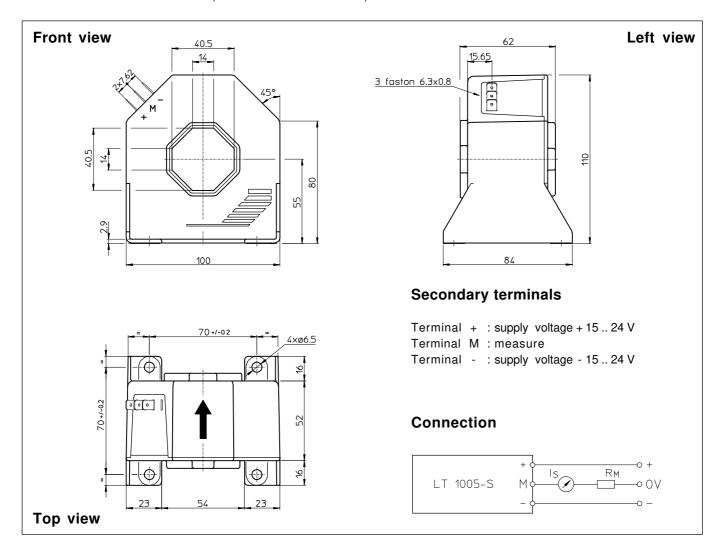
- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole.

070807/7

²⁾ With a di/dt of 100 A/µs.

Dimensions LT 1005-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary
- \pm 0.5 mm 4 holes \varnothing 6.5 mm 40.5 x 40.5 mm Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.