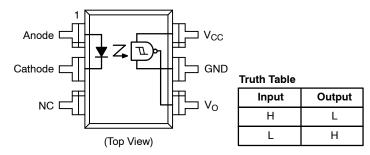
6-Pin DIP Schmitt Trigger Output Optocoupler

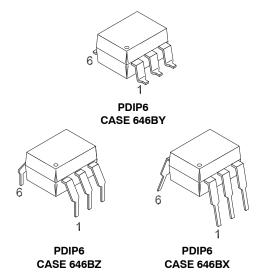
The H11N1M has a high-speed integrated circuit detector optically coupled to an aluminium gallium arsenide (AlGaAs) infrared emitting diode. The output incorporates a Schmitt trigger, which provides hysteresis for noise immunity and pulse shaping. The detector circuit is optimized for simplicity of operation and utilizes an open-collector output for maximum application flexibility.

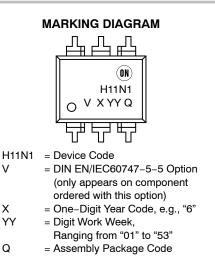

Features

- High Data Rate, 5 MHz Typical (NRZ)
- Free from Latch-up and Oscillation Throughout Voltage and Temperature Ranges
- Microprocessor Compatible Drive
- Logic Compatible Output Sinks 16 mA at 0.5 V Maximum
- Guaranteed On/Off Threshold Hysteresis
- Wide Supply Voltage Capability, Compatible with All Popular Logic Systems
- Safety and Regulatory Approvals:
 - UL1577, 4,170 VAC_{RMS} for 1 Minute
 - DIN-EN/IEC60747-5-5, 850 V Peak Working Insulation Voltage

Applications

- Logic-to-Logic Isolator
- Programmable Current Level Sensor
- Line Receiver Eliminate Noise and Transient Problems
- AC to TTL Conversion Square Wave Shaping
- Interfaces Computers with Peripherals
- Isolated Power MOS Driver for Power Supplies


SCHEMATIC



ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering, marking and shipping information on page 5 of this data sheet.

Table 1. SAFETY AND INSULATION RATINGS As per DIN EN/IEC 60747–5–5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Parameter			Characteristics			
Installation Classifications per DIN VDE 0110/1.89 Table 1, For Rated Mains Voltage		< 150 V _{RMS}	I—I\	/		
		< 300 V _{RMS}	I–I\	/		
Climatic Classifica	ation		55/100/21			
Pollution Degree	(DIN VDE 0110/1.89)		2			
Comparative Trac	king Index		175	175		
Symbol	Paramete	er	Value	Unit		
V _{PR}	Input-to-Output Test Voltage, Method A, V_{IC} Type and Sample Test with $t_m = 10$ s, Partia		1360	V _{peak}		
	Input–to–Output Test Voltage, Method B, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1 s$, Partial Discharge < 5 pC		1594	V _{peak}		
VIORM	Maximum Working Insulation Voltage	n Working Insulation Voltage		V _{peak}		
V _{IOTM}	Highest Allowable Over-Voltage		6,000	V _{peak}		
	External Creepage		≥ 7	mm		
	External Clearance		≥ 7	mm		
	External Clearance (for Option TV, 0.4" Lea	d Spacing)	≥ 10	mm		
DTI	Distance Through Insulation (Insulation Thic	kness)	≥ 0.5	mm		
Τ _S	Case Temperature (Note 1)		175	°C		
I _{S,INPUT}	Input Current (Note 1)	Current (Note 1)		mA		
P _{S,OUTPUT}	Output Power (Note 1)	ee 1)		mW		
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V (Note 1)		> 10 ⁹	Ω		

1. Safety limit values - maximum values allowed in the event of a failure.

Table 2. ABSOLUTE MAXIMUM RATINGS T_{A} = 25°C unless otherwise specified.

Symbol	Parameter	Value	Units
OTAL DEVICE			
T _{STG}	Storage Temperature	-40 to +125	°C
T _{OPR}	Operating Temperature	-40 to +85	°C
TJ	Junction Temperature	-40 to +125	°C
T _{SOL}	Lead Solder Temperature	260 for 10 seconds	°C
PD	Total Device Power Dissipation at 25°C	210	mW
	Derate above 25°C	2.94	mW/°C
WITTER	·	•	
١ _F	Continuous Forward Current	30	mA
V _R	Reverse Voltage	6	V
l _F (pk)	Forward Current – Peak (1 µs pulse, 300 pps)	100	mA
PD	LED Power Dissipation	60	mW
ETECTOR			
PD	Detector Power Dissipation	150	mW
Vo	V ₄₅ Allowed Range	0 to 16	V
V _{CC}	V ₆₅ Allowed Range	3 to 16	V
Ι _Ο	I ₄ Output Current	50	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
EMITTER						
V _F	Input Forward Voltage	I _F = 10 mA		1.4	2.0	V
		I _F = 0.3 mA	0.75	1.25		
I _R	Reverse Current	V _R = 5 V			10	μA
CJ	Capacitance	V = 0 V, f = 1.0 MHz			100	pF
DETECTOR						
V _{CC}	Operating Voltage Range		4		15	V
I _{CC(off)}	Supply Current	I _F = 0 mA, V _{CC} = 5 V		6	10	mA

 $I_F = 0 \text{ mA}, V_{CC} = V_0 = 15 \text{ V}$

100

μA

Table 4. TRANSFER CHARACTERISTICS T_A = 25°C unless otherwise specified

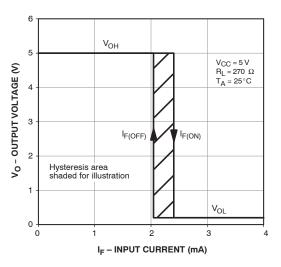
Output Current, High

Symbol	Parameter	Test Conditions	Min	Тур	Мах	Units
I _{CC(on)}	Supply Current	I _F = 10 mA, V _{CC} = 5 V		6.5	10.0	mA
V _{OL}	Output Voltage, Low	$ \begin{array}{l} R_L = 270 \ \Omega, \ V_{CC} = 5 \ V, \\ I_F = I_{F(on)} \ Maximum \end{array} $			0.5	V
I _{F(on)}	Turn-On Threshold Current	R_L = 270 Ω , V_{CC} = 5 V (Note 2)	0.8		3.2	mA
I _{F(off)}	Turn–Off Threshold Current	R_L = 270 Ω , V_{CC} = 5 V	0.3			mA
I _{F(off)} / I _{F(on)}	Hysteresis Ratio	R_L = 270 Ω, V_{CC} = 5 V	0.65		0.95	

Table 5. SWITCHING SPEED

I_{OH}

Symbol	AC Characteristics	Test Conditions	Min	Тур	Max	Units
t _{on}	Turn-On Time	C = 120 pF, t _P = 1 μ s, R _E = (Note 3), Figure 7		100	330	ns
t _r	Rise Time	$\label{eq:constraint} \begin{array}{l} C = 120 \text{ pF}, \text{t}_{P} = 1 \mu\text{s}, \\ \text{R}_{E} = (\text{Note 3}), \text{ Figure 7} \end{array}$		7.5		ns
t _{off}	Turn–Off Time	C = 120 pF, t _P = 1 μ s, R _E = (Note 3), Figure 7		150	330	ns
t _f	Fall Time	$\label{eq:constraint} \begin{array}{l} C = 120 \text{ pF}, \text{tp} = 1 \mu\text{s}, \\ \text{R}_{\text{E}} = (\text{Note 3}), \text{ Figure 7} \end{array}$		12		ns
	Data Rate			5		MHz


Table 6. ISOLATION CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
V _{ISO}	Input-Output Isolation Voltage	t = 1 Minute	4170			VAC _{RMS}
C _{ISO}	Isolation Capacitance	V _{I–O} = 0 V, f = 1 MHz		0.4	0.6	pF
R _{ISO}	Isolation Resistance	V_{I-O} = ±500 VDC, T_A = 25°C	10 ¹¹			Ω

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Maximum I_{F(on)} is the maximum current required to trigger the output. For example, a 3.2 mA maximum trigger current would require the LED to be driven at a current greater than 3.2 mA to guarantee the device will turn on. A 10% guard band is recommended to account for degradation of the LED over its lifetime. The maximum allowable LED drive current is 30 mA.

3. H11N1: $R_E = 910 \Omega$

TYPICAL CHARACTERISTICS

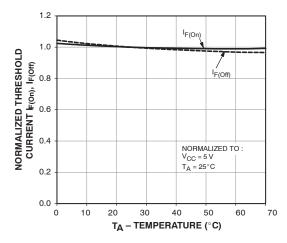


Figure 3. Threshold Current vs. Temperature

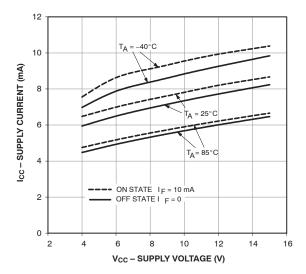


Figure 5. Supply Current vs. Supply Voltage

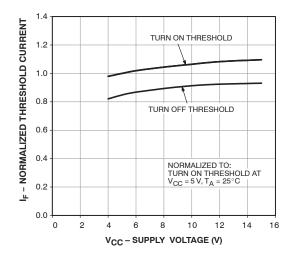


Figure 2. Threshold Current vs. Supply Voltage

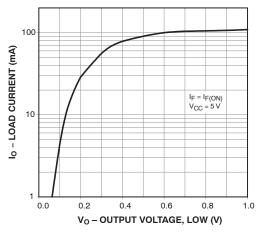
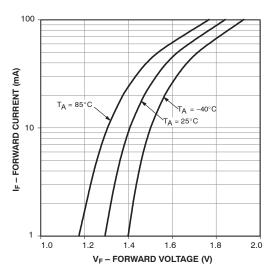



Figure 4. Load Current vs. Output Voltage

TEST CIRCUIT

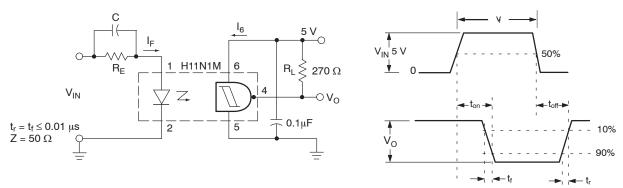
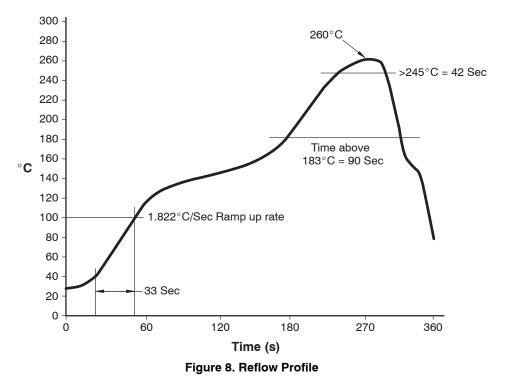
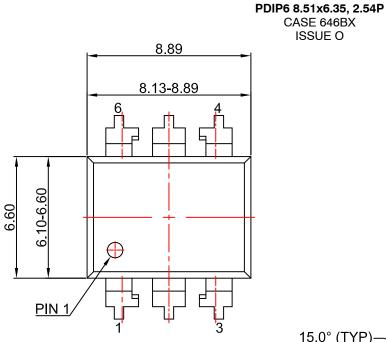
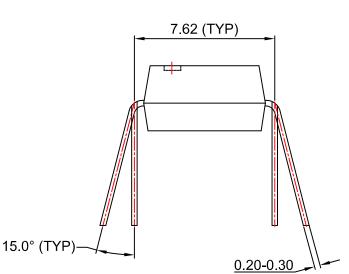
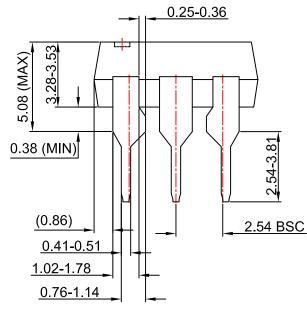



Figure 7. Switching Test Circuit and Waveforms

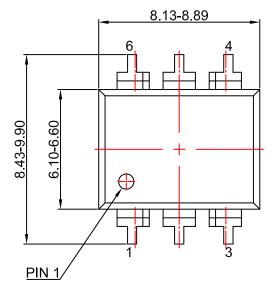


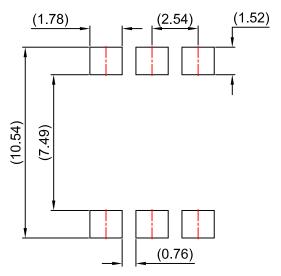

REFLOW PROFILE


ORDERING INFORMATION

Part Number	Package	Packing Method
H11N1M	DIP 6-Pin	Tube (50 Units)
H11N1SM	SMT 6-Pin (Lead Bend)	Tube (50 Units)
H11N1SR2M	SMT 6-Pin (Lead Bend)	Tape and Reel (1000 Units)
H11N1VM	DIP 6-Pin, DIN EN/IEC60747-5-5 Option	Tube (50 Units)
H11N1SVM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tube (50 Units)
H11N1SR2VM	SMT 6-Pin (Lead Bend), DIN EN/IEC60747-5-5 Option	Tape and Reel (1000 Units)
H11N1TVM	DIP 6-Pin, 0.4" Lead Spacing, DIN EN/IEC60747-5-5 Option	Tube (50 Units)

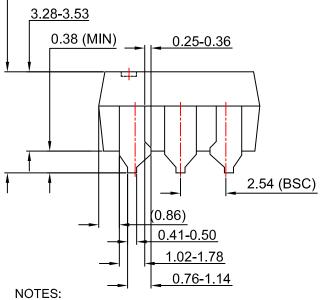
PACKAGE DIMENSIONS



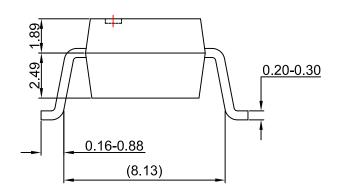

NOTES:

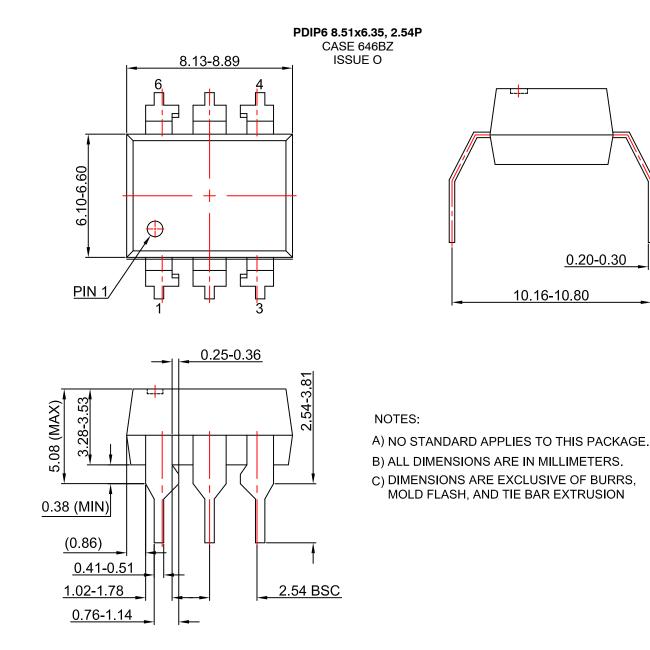
- A) NO STANDARD APPLIES TO THIS PACKAGE.
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

PACKAGE DIMENSIONS


PDIP6 8.51x6.35, 2.54P CASE 646BY ISSUE O

LAND PATTERN RECOMMENDATION




A) NO STANDARD APPLIES TO THIS PACKAGE.

B) ALL DIMENSIONS ARE IN MILLIMETERS.

C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSION

PACKAGE DIMENSIONS

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and taken the human body. Should Buyer purchase or use ON Semiconductor for any such unintended for implantation in the human body. Should Buyer purchase or use ON Semiconductor for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, an

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Furope, Middle Fast and Africa Technical Support: ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

Europe, Middle East and Africa Technical Support: C Phone: 421 33 790 2910

For additional information, please contact your loca Sales Representative