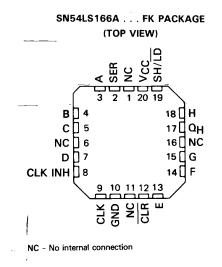
OCTOBER 1976 - REVISED MARCH 1988

- Synchronous Load
- Direct Overriding Clear
- Parallel to Serial Conversion

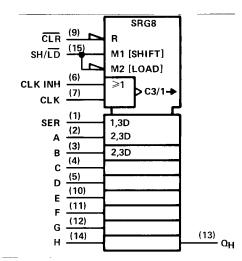
ТҮРЕ	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
'166	35 MHz	360 mW
'I S166A	35 MHz	100 mW

description

The '166 and 'LS166A 8-bit shift registers are compatible with most other TTL logic families. All '166 and 'LS166A inputs are buffered to lower the drive requirements to one Series 54/74 or Series 54LS/74LS standard load, respectively. Input clamping diodes minimize switching transients and simplify system design.


These parallel-in or serial-in, serial-out shift registers have a complexity of 77 equivalent gates on a monolithic chip. They feature gated clock inputs and an overriding clear input. The parallel-in or serial-in modes are established by the shift/load input. When high, this input enables the serial data input and couples the eight flip-flops for serial shifting with each clock pulse. When low, the parallel (broadside) data inputs are enabled and synchronous loading occurs on the next clock pulse. During parallel loading, serial data flow is inhibited. Clocking is accomplished on the low-to-high-level edge of the clock pulse through a two-input positive NOR gate permitting one input to be used as a clock-enable or clock-inhibit function. Holding either of the clock inputs high inhibits clocking; holding either low enables the other clock input. This, of course, allows the system clock to be free-running and the register can be stopped on command with the other clock input. The clock inhibit input should be changed to the high level only while the clock input is high. A buffered, direct clear input overrides all other inputs, including the clock, and sets all flip-flops to zero.

FUNCTION TABL


· · · · ·		18	PUTS			INTE	RNAL	
	SHIFT/	CLOCK	СТОСК	SERIAL	PARALLEL		PUTS	OUTPUT Q _H
-	LOAD	INHIBIT	02000	oenine.	АН	QA	α _B	-H
L	×	x	х	х	×	L	L	L
н	x	L	L	x	x	Q _{A0}	Q _{B0}	QHO
н	L	Ł	t	×	ah	а	b	h
н	н	L	t	н	х	н	۵ _{An}	QGn
н	н	L	t	L	х	L	QAn	QGn
н	x	н	t	x	х	Q _{A0}	0 ₈₀	α _{н0}

SN54166, SN54LS166A J OR W PACKAGE	
SN74166 N PACKAGE	
SN74LS166A D OR N PACKAGE	
(TOP VIEW)	

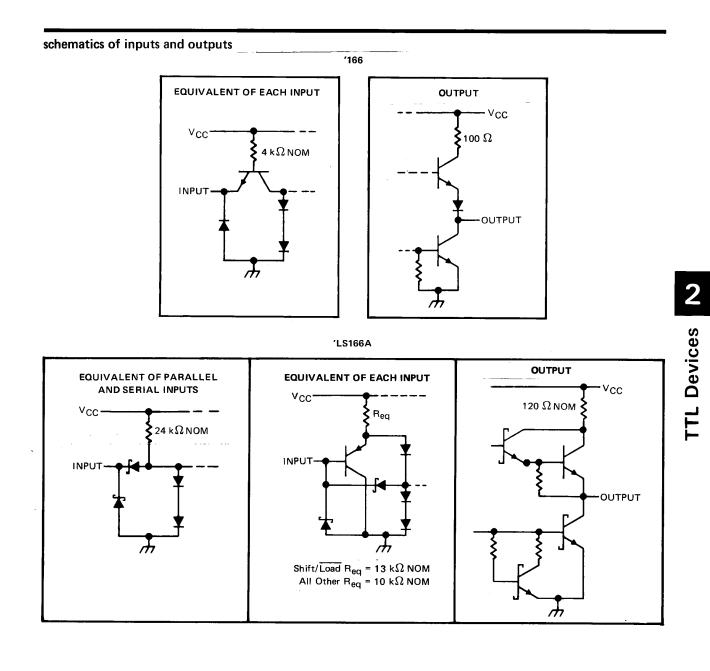
SER Ц1	\bigcirc 16	P*UU
A [] 2	15	SH/LD
в 🛛 з	14	□н
c∏₄	13	□он
D 🗌 5	12	□G
	11	∏ F
CLK 🔲 7	10	Π Ε
	9	

logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

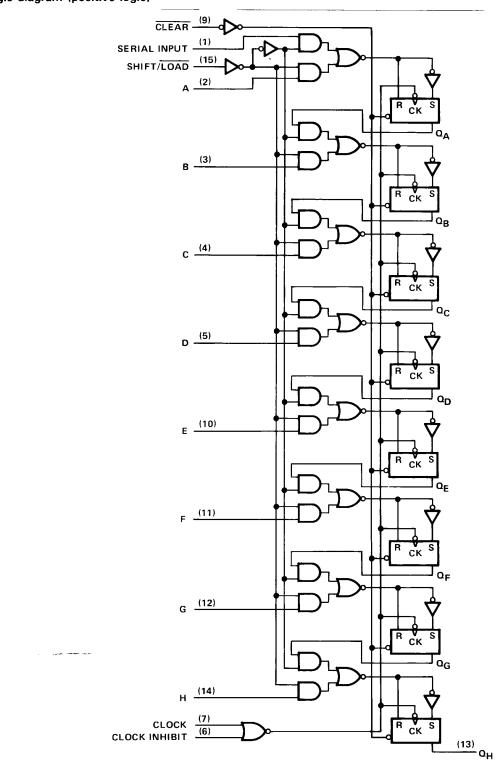
Pin numbers shown are for D, J, N, and W packages.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



typical clear, shift, load, inhibit, and shift sequences

I L H L SERIAL SHIFT I -2 I **TTL Devices** Ē н I Ī I I _ ÷ _ SERIAL SHIFT т 60 c υ ò SERIAL INPUT SHIFT/LOAD ۲ ш ц. CLOCK INHIBIT CLEAR ουτΡυτ α_Η PARALLEL INPUTS


CLEAR

and an and an and

logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

SN54166, SN74166 PARALLEL·LOAD 8-BIT SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .				• •	 	• •		•				7 V
Input voltage				•	 							5.5 V
Operating free-air temperature range:	SN54166	(see No	te 2) .		 			•		-55°	°C to	125°C
	SN74166				 	. •		•	• •	. ()°C to	ა 70°C
Storage temperature range				•••	 			•	-	-65°	°C to	150°C
recommended operating conditions												

	5	s					
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-800			-800	μA
Low-level output current, IOL			16			16	mA
Clock frequency, fclock	0		25	0		25	MHz
Width of clock or clear pulse, tw (see Figure 1)	20			20			ns
Mode-control setup time, t _{su}	30			30			ns
Data setup time, t _{su} (see Figure 1)	20			20			ns
Hold time at any input, th (see Figure 1)	0			0			ns
Operating free-air temperature, TA (see Note 2)	55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

		TEST CONDITIONS [†]) s	SN5416	6	s			
	PARAMETER	TEST CONDITIONS		TYP‡	MAX	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
VIĶ	Input clamp voltage	$V_{CC} = MIN, I_I = -12 \text{ mA}$	1		-1.5			-1.5	V
VOH	High-level output voltage	$V_{CC} = MIN, V_{IH} = 2 V,$ $V_{IL} = 0.8 V, I_{OH} = -800 \mu A$	2.4	3.4		2.4	3.4		v
VOL	Low-level output voltage	$V_{CC} = MIN, V_{IH} = 2V,$ $V_{IL} = 0.8V, I_{OL} = 16 mA$		0.2	0.4		0.2	0.4	v
4	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1			- 1	mA
Чн	High-level input current	V _{CC} = MAX, V _I = 2.4 V	1		40			40	μA
μL	Low-level input current	V _{CC} = MAX, V _I = 0.4 V			-1.6			-1.6	mA
los	Short-circuit output current§	V _{CC} = MAX	-20		-57	-18		-57	mA
ICC	Supply current	V _{CC} = MAX, See Note 3		90	127		90	127	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡]All typical values are at $V_{CC} = 5 V$, $T_A = 25^{\circ}C$.

\$Not more than one output should be shorted at a time.

NOTES: 1. Voltage values are with respect to network ground terminal.

- 2. An SN54166 in the W package operating at free-air temperatures above 113° C⁻requires a heat-sink that provides a thermal resistance from case to free air, R_{0CA}, of not more than 48° C/W.
- 3. With all outputs open, 4.5 V applied to the serial input, all other inputs except the clock grounded, I_{CC} is measured after a momentary ground, then 4.5 V, is applied to the clock.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER		PARAMETER TEST CONDITIONS		TYP	MAX	UNIT
max	Maximum clock frequency		25	35		MHz
PHL	Propagation delay time, high-to- low-level output from clear	0 15 - F - 10 - 10 ()		23	35	ns
PHL	Propagation delay time, high-to- low-level output from clock	CL = 15 pF, RL = 400 քչ, See Figure 1		20	30	ns
	Propagation delay time, low-to- high-level output from clock			17	26	ns

TTL Devices

2-533

SN54LS166A, SN74LS166A **PARALLEL·LOAD 8-BIT SHIFT REGISTERS**

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	7V
Input voltage	7V
Operating free-air temperature range: SN54LS166A	
SN74LS166A	
Storage temperature range	5°C to 150°C

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	SN54LS166A			SN54LS166A SN74LS166A			
	MIN	ТҮР	MAX	MIN	ТҮР	MAX	
Supply voltage	4.5	5	5.5	4.75	5	5.25	V
High-level input voltage	2			2			V
Low-level input voltage			0.7			0.8	1 v
High-level output current			- 0.4	<u> </u>		- 0.4	mA
Low-level output current			4			8	mA
Clock frequency	0		25	0		25	MHz
Width of clear pulse (See Figure 1)	20			20			ns
Width of clock pulse (See Figure 1)	25			25			1
Mode-control setup time	30			30			ns
Data setup time (See Figure 1)	20		1	20			ns
Hold time at any input (See Figure 1 and Note 4)	0			0			ns
Operating free air temperature	- 55		125	0	, <u> </u>	70	°c
	High-level input voltage Low-level input voltage High-level output current Low-level output current Clock frequency Width of clear pulse (See Figure 1) Width of clock pulse (See Figure 1) Mode-control setup time Data setup time (See Figure 1) Hold time at any input (See Figure 1 and Note 4)	MINSupply voltage4.5High-level input voltage2Low-level input voltage2High-level output current2Low-level output current2Clock frequency0Width of clear pulse (See Figure 1)20Width of clock pulse (See Figure 1)25Mode-control setup time30Data setup time (See Figure 1)20Hold time at any input (See Figure 1 and Note 4)0	MINTYPSupply voltage4.55High-level input voltage2Low-level input voltage2High-level output current	MINTYPMAXSupply voltage4.555.5High-level input voltage22Low-level input voltage-0.7High-level output currentLow-level output current-4Clock frequency025Width of clear pulse (See Figure 1)20Width of clock pulse (See Figure 1)25Mode-control setup time30Data setup time (See Figure 1)20Hold time at any input (See Figure 1 and Note 4)0	MINTYPMAXMINSupply voltage4.555.54.75High-level input voltage222Low-level input voltage0.7High-level output current0.7Low-level output current0.4Clock frequency0250Width of clear pulse (See Figure 1)2020Width of clock pulse (See Figure 1)2525Mode-control setup time3030Data setup time (See Figure 1 and Note 4)00	MINTYPMAXMINTYPSupply voltage4.555.54.755High-level input voltage2222Low-level input voltage0.40.40.4Low-level output current0.40.40.4Low-level output current0.40.40.4Clock frequency0250Width of clear pulse (See Figure 1)2020Width of clock pulse (See Figure 1)2525Mode-control setup time3030Data setup time (See Figure 1)2020Hold time at any input (See Figure 1 and Note 4)00	MIN TYP MAX MIN TYP MAX Supply voltage 4.5 5 5.5 4.75 5 5.25 High-level input voltage 2 2 2 2 2 0.8 Low-level input voltage -0.4 -0.4 -0.4 -0.4 -0.4 Low-level output current -0.4 4 8 8 Clock frequency 0 25 0 25 Width of clear pulse (See Figure 1) 20 20 20 20 25 Mode-control setup time 30

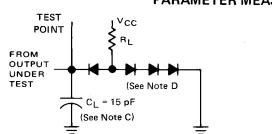
NOTE 4: The hold time limit of 0 ns applies only if the rise time is less than or equal to 10 ns.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITION	et	SN	SN	66A				
			MIN	TYP‡	MAX	MIN	түр‡	MAX	
VIK	V _{CC} = MIN, I _I = − 18 mA				- 1.5			- 1.5	V
∨он	$V_{CC} = MIN, V_{IH} = 2 V, V_I$ $I_{OH} = -0.4 \text{ mA}$	L = MAX,	2.5	3.4		2.7	3.4		V
N.S.	V _{CC} = MIN, V _{IH} = 2 V, I _O	L = 4 mA		0.25	0.4		0.25	0.4	
VOL	VIL = MAX	L≈8mA					0.35	0.5	- ×
4	V _{CC} = MAX, V _I = 7 V				0.1			0.1	mA
ЧН	V _{CC} = MAX, V _I = 2.7 V				20			20	μΑ
ΊL	V _{CC} = MAX, V _I = 0.4 V	<u> </u>			- 0.4			- 0.4	mA
IOSS	V _{CC} = MAX		- 20		- 100	- 20		- 100	mA
Icc	V _{CC} = MAX, See Note 5			20	32		20	32	mA

tFor conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. 1 \pm All typical values are at V_{CC} = 5 V, T_A = 25°C.

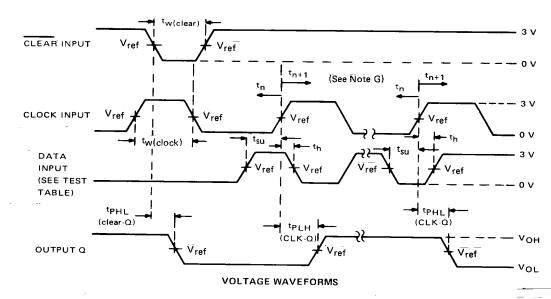
\$Not more than one output should be shorted at a time, and duration for short-circuit should not exceed one second.


NOTE 5: With all outputs open, 4.5 V applied to the serial input and all other inputs except the clock grounded, ICC is measured after a momentary ground, than 4.5 V, is applied to clock.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} Maximum clock frequency		25	35		MHz
Propagation delay time, high-to- ^t PHL low-level output from clear		-	19	30	ns
Propagation delay time, high-to- tPHL low-level output from clock	$C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega,$ See Figure 1	7	14	25	ns
Propagation delay time, low-to- ^t PLH high-level output from clock		5	11	20	ns

Ŷ



LOAD FOR OUTPUT UNDER TEST

PARAMETER MEASUREMENT INFORMATION

TEST TABLE FOR SYNCHRONOUS INPUTS

DATA INPUT FOR TEST	SHIFT/LOAD	OUTPUT TESTED (SEE NOTE F)
н	0 V	Q _H at t _{n+1}
Serial Input	4.5 V	Q _H at t _{n+8}

NOTE: A. All pulse generators have the following characteristics: $Z_{out} \approx 50\Omega$; for '166, $t_r \leq 7$ ns and $t_f \leq 7$ ns; for 'LS166A, $t_r \leq 15$ ns and $t_f \leq 6$ ns.

- B. The clock pulse has the following characteristics: $t_{w(clock)} \le 20$ ns and PRR = 1 MHz. The clear pulse has the following characteristics: $t_{w(clear)} \le 20$ ns and t_{hold} = 0 ns. When testing f_{max} , vary the clock PRR.
- C. CL includes probe and jig capacitance.
- D. All diodes are 1N3064, 1N916, or equivalent.
- E. A clear pulse is applied prior to each test.
- F. Propagation delay times (tPLH and tPHL) are measured at tn + 1. Proper shifting of data is verified at tn + 8 with a functional test.
- G. $t_n = bit$ time before clocking transition
 - t_{n+1} = bit time after one clocking transition
 - $t_{n+8} = bit$ time after eight clocking transitions
- H. For '166 V_{ref} = 1.5 V; for 'LS166A V_{ref} = 1.3 V.

FIGURE 1

2

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9558301QEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9558301QE A SNJ54166J	Samples
5962-9558301QFA	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9558301QF A SNJ54166W	Samples
5962-9558301QFA	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9558301QF A SNJ54166W	Samples
8001701EA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8001701EA SNJ54LS166AJ	Samples
8001701EA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8001701EA SNJ54LS166AJ	Samples
8001701FA	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8001701FA SNJ54LS166AW	Samples
8001701FA	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8001701FA SNJ54LS166AW	Samples
JM38510/30609B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 30609B2A	Samples
JM38510/30609B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 30609B2A	Samples
JM38510/30609BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 30609BEA	Samples
JM38510/30609BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 30609BEA	Samples
M38510/30609B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 30609B2A	Samples
M38510/30609B2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 30609B2A	Samples
M38510/30609BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 30609BEA	Samples
M38510/30609BEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	JM38510/ 30609BEA	Samples

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SN54166J	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54166J	Samples
SN54166J	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54166J	Samples
SN54LS166AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS166AJ	Samples
SN54LS166AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SN54LS166AJ	Samples
SN74LS166ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS166A	Samples
SN74LS166ADR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	LS166A	Samples
SN74LS166AN	ACTIVE	PDIP	Ν	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS166AN	Samples
SN74LS166AN	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74LS166AN	Samples
SN74LS166ANSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS166A	Samples
SN74LS166ANSR	ACTIVE	SO	NS	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	74LS166A	Samples
SNJ54166J	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9558301QE A SNJ54166J	Samples
SNJ54166J	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9558301QE A SNJ54166J	Samples
SNJ54166W	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9558301QF A SNJ54166W	Samples
SNJ54166W	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9558301QF A SNJ54166W	Samples
SNJ54LS166AFK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS 166AFK	Samples
SNJ54LS166AFK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	SNJ54LS 166AFK	Samples
SNJ54LS166AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8001701EA SNJ54LS166AJ	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
SNJ54LS166AJ	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8001701EA SNJ54LS166AJ	Samples
SNJ54LS166AW	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8001701FA SNJ54LS166AW	Samples
SNJ54LS166AW	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	8001701FA SNJ54LS166AW	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

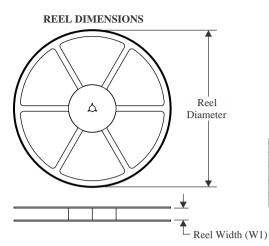
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

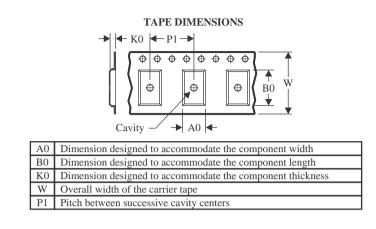
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

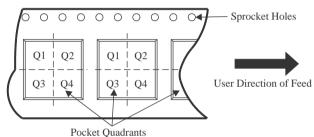
OTHER QUALIFIED VERSIONS OF SN54LS166A, SN74LS166A :

• Catalog : SN74LS166A

Military : SN54LS166A

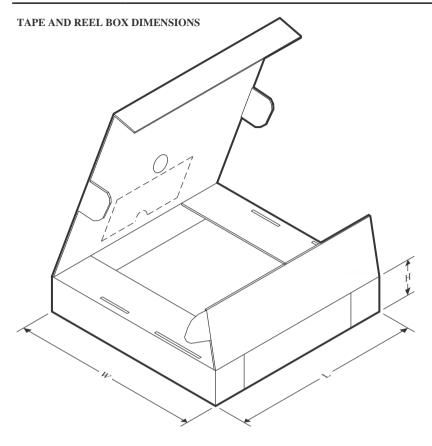

NOTE: Qualified Version Definitions:


- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications


www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

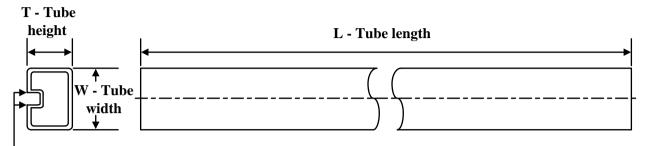

*All dimensions are nominal												
Device	•	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LS166ADR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
SN74LS166ANSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

12-May-2023

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LS166ADR	SOIC	D	16	2500	340.5	336.1	32.0
SN74LS166ANSR	SO	NS	16	2000	356.0	356.0	35.0

TEXAS INSTRUMENTS

www.ti.com

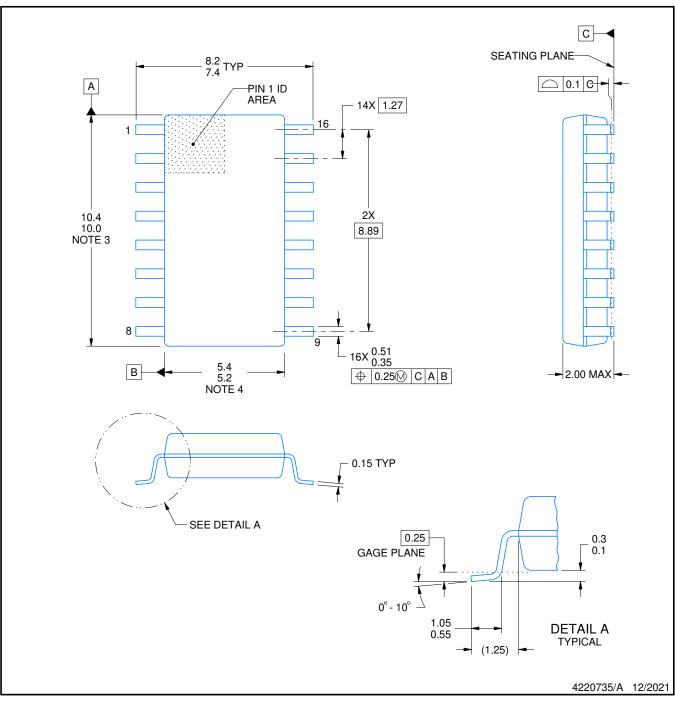
12-May-2023

TUBE

- B - Alignment groove width

*All dimensions are nominal

Device	Package Name	Package Type	Pins	SPQ	L (mm)	W (mm)	Τ (μm)	B (mm)
5962-9558301QFA	W	CFP	16	1	506.98	26.16	6220	NA
8001701FA	W	CFP	16	1	506.98	26.16	6220	NA
JM38510/30609B2A	FK	LCCC	20	1	506.98	12.06	2030	NA
M38510/30609B2A	FK	LCCC	20	1	506.98	12.06	2030	NA
SN74LS166AN	N	PDIP	16	25	506	13.97	11230	4.32
SN74LS166AN	N	PDIP	16	25	506	13.97	11230	4.32
SNJ54166W	W	CFP	16	1	506.98	26.16	6220	NA
SNJ54LS166AFK	FK	LCCC	20	1	506.98	12.06	2030	NA
SNJ54LS166AW	W	CFP	16	1	506.98	26.16	6220	NA


NS0016A

PACKAGE OUTLINE

SOP - 2.00 mm max height

SOP

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.



NS0016A

EXAMPLE BOARD LAYOUT

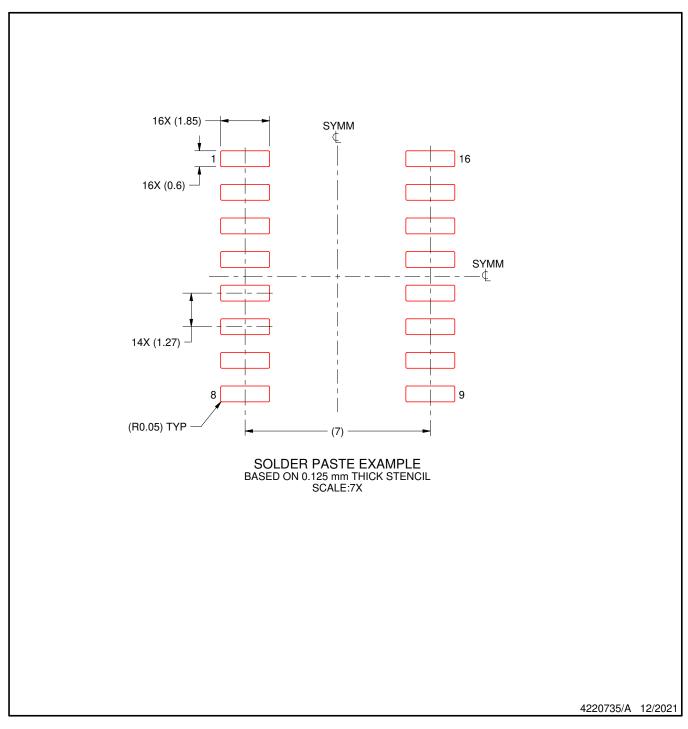
SOP - 2.00 mm max height

SOP

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



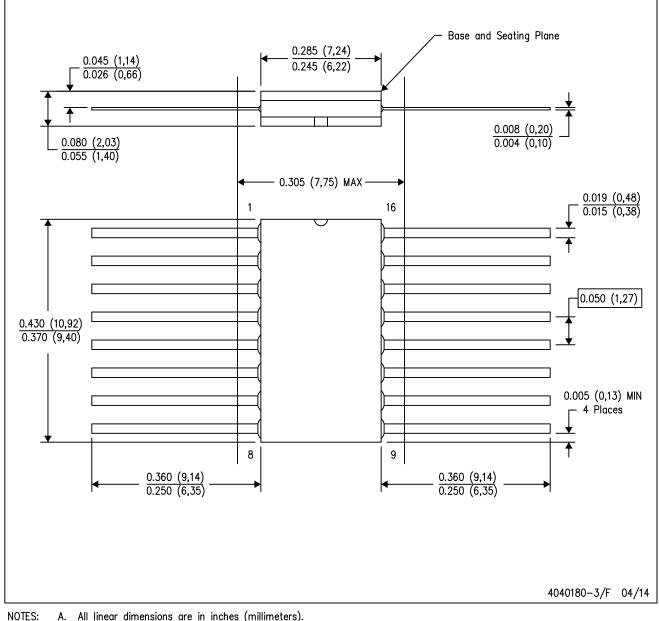
NS0016A

EXAMPLE STENCIL DESIGN

SOP - 2.00 mm max height

SOP

NOTES: (continued)


7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

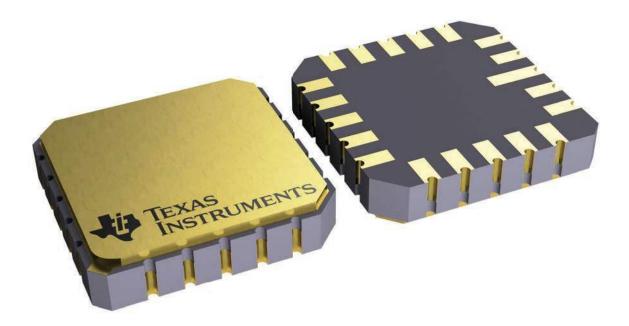
8. Board assembly site may have different recommendations for stencil design.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP2-F16

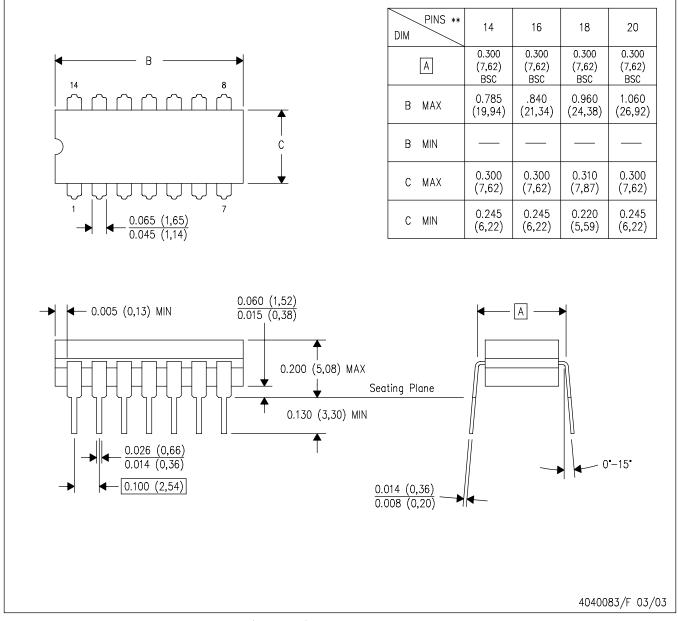
FK 20


8.89 x 8.89, 1.27 mm pitch

GENERIC PACKAGE VIEW

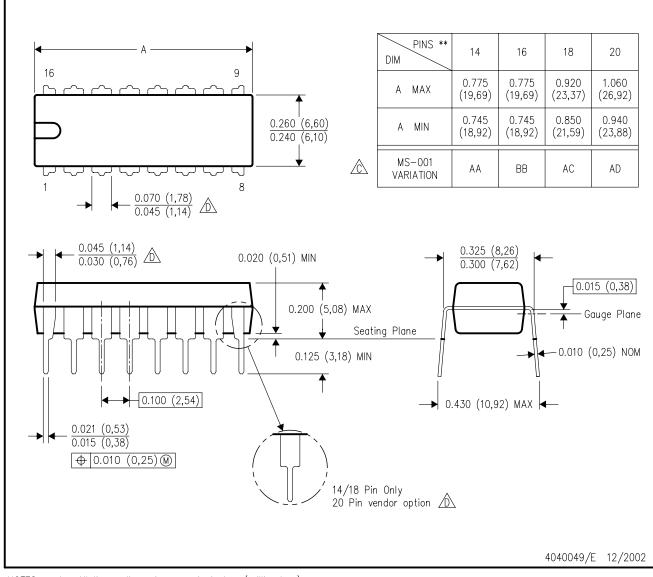
LCCC - 2.03 mm max height

LEADLESS CERAMIC CHIP CARRIER


This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE

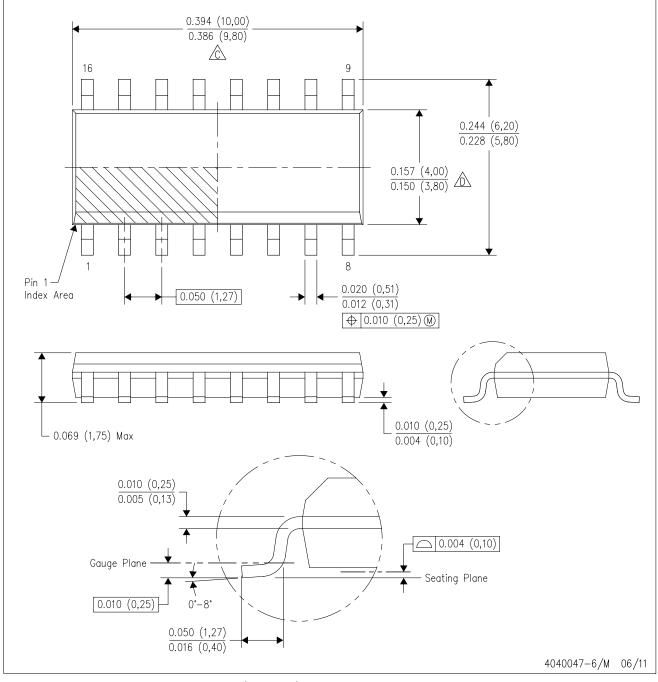

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0-10 Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated