

ADS848xEVM

This user's guide describes the characteristics, operation, and use of the <u>ADS8482</u> 18-bit, 1-MHz, parallel interface and <u>ADS8484</u> 18-bit, 1.25-MHz, parallel interface, analog-to-digital converter (ADC) evaluation module (EVM). A complete circuit description, schematic diagram, and bill of materials are included. Throughout this document, the term *evaluation module* and the abbreviation *EVM* are synonymous with the ADS848xEVM. For ease of reading, this user's guide refers to the ADS8482EVM or ADS8484EVM as the *ADS848xEVM*. Operation of the EVM for both devices is identical, unless otherwise noted.

Contents

1	EVM C	Dverview	2
2	Introdu	ction	2
3	Analog	Interface	2
4	Digital	Interface	6
5	Power	Supplies	8
6	Using t	the ADS848xEVM	9
7	Relate	d Documentation from Texas Instruments	10
Appen	dix A	ADS848xEVM Bill of Materials	11
Appen	dix B	ADS848xEVM LAYOUT	13
		ADS848xEVM Schematic	

List of Figures

1	Input Buffer Circuit, Default Configuration	4
	Input Buffer, Bipolar Fully Differential Input	
B-1	Top Layer – Layer 1	13
	Ground Plane – Layer 2	
B-3	Power Plane – Layer 3	15
	Bottom Layer – Layer 4	
B-5	Top Overlay	17
	Bottom Overlay	

List of Tables

1	Analog Input Connector	2
2	Analog Circuitry Jumper Configurations	6
3	Pinout for Parallel Control Connector P3	6
4	Jumper Settings	7
5	Data Bus Connector P2	7
6	Pinout for Converter Control Connector, J6	8
7	Power-Supply Test Points	8
8	Power Connector, J1, Pinout	8
A-1	Bill of Materials	11

C5000, C6000 are trademarks of Texas Instruments. All other trademarks are the property of their respective owners.

TEXAS INSTRUMENTS

EVM Overview

1 EVM Overview

1.1 Features

- Full-featured evaluation board for the high-speed, 18-bit ADS8482 and ADS8484 1-MSPS/1.25-MSPS, single-channel, parallel interface, SAR-type analog-to-digital converters
- Onboard signal conditioning
- Onboard reference
- Input and output digital buffers
- Onboard decoding for stacking multiple EVMs

2 Introduction

The <u>ADS8482</u> is an 18-bit, 1-MSPS analog-to-digital converter (ADC) with an internal 4.096-V reference and a pseudo-bipolar, fully differential input. The <u>ADS8484</u> is an 18-bit, 1.25-MSPS version of the same core design. These devices are capacitor-based, successive approximation register (SAR) converters with an inherent sample-and-hold stage. The ADS848x has 8-bit, 16-bit, and 18-bit parallel interface bus options, allowing a variety of processors to interface easily.

The ADS848xEVM is an evaluation and demonstration platform for the ADS848x ADC. The EVM board is a flexible design that allows the user to choose among many different analog signal conditioning, reference, and interface modes.

3 Analog Interface

The ADC accepts a pseudo-bipolar differential input. A pseudo-bipolar differential signal is a fully differential signal that has a common-mode voltage such that the voltage on each input is always equal to or greater than 0 V. The common-mode voltage should be half the reference voltage. The peak-to-peak amplitude on each input leg can be as large as the reference voltage.

The positive leg of the input signal can be applied at connector P1, pin 2 (shown in Table 1) or via the center pin of SMA connector J1. Likewise, the negative input signal can be applied at P1, pin 1 or via the center pin of SMA connector J2.

Description	Signal Name	Connect	or Pin No.	Signal Name	Description		
Not connected	-	P1.1	P1.2	+	Noninverting input channel		
Reserved	N/A	P1.3	P1.4	N/A	Reserved		
Reserved	N/A	P1.5	P1.6	N/A	Reserved		
Reserved	N/A	P1.7	P1.8	N/A	Reserved		
Reserved	N/A	P1.9	P1.10	N/A	Reserved		
Pin tied to ground	AGND	P1.11	P1.12	N/A	Reserved		
Pin tied to ground	AGND	P1.13	P1.14	N/A	Reserved		
Reserved	N/A	P1.15	P1.16	N/A	Reserved		
Pin tied to ground	AGND	P1.17	P1.18	N/A	Reserved		
Pin tied to ground	AGND	P1.19	P1.20	REF+	External reference input		

Table 1. Analog Input Connector

3.1 Input Signal Conditioning

The analog input circuitry, consisting of three <u>THS4031</u> operational amplifiers, allow the user to install passive components to configure the EVM for positive or negative gains, as well as input range scaling, filtering, and level translation (for example, adding a dc offset). The installed operational amplifiers are housed in an industry-standard SOIC footprint. This architecture enables the user to replace the THS4031 with a wide range of dual- and single-supply amplifiers housed in an SOIC package. When choosing the driver amplifier, the user should consider the following requirements: The driving amplifier must be able to settle the input to 18-bit level (0.00038%) within the sample time of the converter. It should have total harmonic distortion (THD) characteristics comparable to or better than the ADS848x over the bandwidth of interest. Lastly, the noise generated by the amplifier must be as low as possible, so as not to degrade (or source-limit) the performance of the ADS848x.

The RC circuit, at the input of the ADC, filters the input signal and helps charge the ADC sample-and-hold stage. The noise coming through the driver amplifier is also filtered using this single-pole filter. The 5- Ω series resistor works with the capacitor to filter the input signal, but also isolates the amplifier from the capacitive load. The 2200-pF capacitor works with the series resistor to filter the input signal and behaves like a charge reservoir, providing a discharge path for high-frequency noise and the input current transients that occur when the device switches from hold to sample mode. This external capacitor works with the amplifier to charge the internal sampling capacitor during sampling mode. In multiplexing applications, the values of these resistors and capacitor may need to be adjusted. As with the driving amplifier, the RC circuit must also be able to settle the signal to a 18-bit level within the sample time.

The supplies to the input amplifier are selectable with solder jumper pad SJP3 and SJP4. Shorting across pads 1 and 2 will ground the negative rail. Shorting across pads 2 and 3 will tie the negative supply of the amplifiers to the voltage applied at node –VCC.

When deciding on supply rails for bipolar amplifiers, a good rule is to add at least 2 V of head room on either side to achieve optimal performance. For example, if the signal applied to the amplifier is 0V to 4 V, then the amplifier rails should be at least –2 V and +6 V. For the 16-bit and 18-bit performance nodes, the amplifier-introduced distortion can become significant and degrade overall system perforamnce. For CMOS, or single-supply amplifiers, this configuration is not always possible. As with the bipolar amplifiers, single-supply amplifiers also degrade with larger amplitudes and at higher input frequencies. The user must test the amplifier separately to understand its respective characteristics across the given input conditions. Take care when reading product data sheets to understand how the device is characterized. It may not be possible to surmise from a cursory glance how well the amplifier will behave in a given system.

Single-ended signal sources are readily available; therefore, the ADS848xEVM ships in this configuration. The factory-set default configuration of the input driving circuitry is for converting a single-ended, unipolar signal to differential. The necessary dc component to offset the signal at U7 is generated by U4. U4 is the low-noise <u>THS4032</u> amplifier. It can be configured to further filter the reference voltage IC, U2, and provide positive or negative gains. The ADS848xEVM leaves the factory with potentiometer, R24, set to 2.048 V and set as shown in Figure 1. If a fully differential signal source is available, it is recommended the input circuitry be set up as shown in Figure 2 or as Figure 40 in the <u>ADS84844 product data sheet</u>. Table 2 indicates how the solder pad jumpers should be set to select from the various supply and input options for the analog driver circuitry. The schematic for the ADS848xEVM is attached at the end of this document.

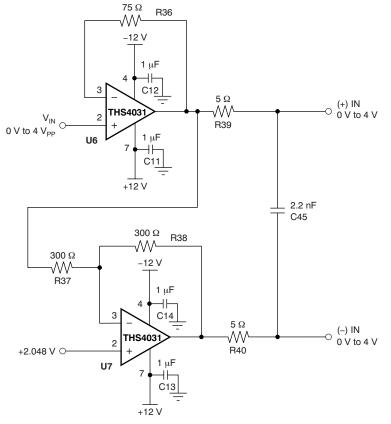


Figure 1. Input Buffer Circuit, Default Configuration

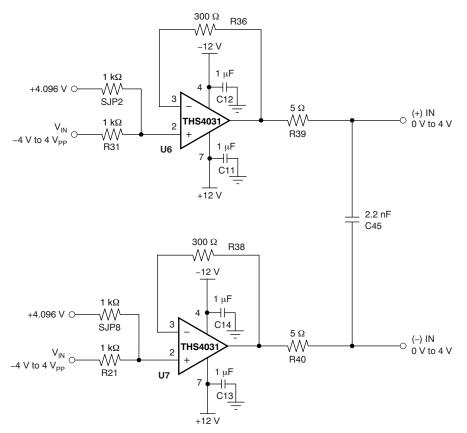


Figure 2. Input Buffer, Bipolar Fully Differential Input

Reference		Jumpo	er Position
Designator	Description	1-2	2-3
SJP1	Select onboard reference (REF3240)	Installed (1)	Not Installed
5JP1	Select user-supplied reference at P1 pin 20	Not Installed	Installed
SJP2	Short voltage node +dc to U6 pin 3	Installed	N/A
SJP3	Set U6 operational amplifier minus rail supply to ground	Installed	Not installed
	Set U6 operational amplifier minus rail supply to -VCC	Not installed	Installed (1)
SJP4	Set U7 operational amplifier minus rail supply to ground	Installed	Not Installed
	Set U7 operational amplifier minus rail supply to -VCC	Not installed	Installed (1)
SJP6	Set REFIN pin of ADS848x to on-chip (internal) reference voltage.	Installed (1)	Not installed
	Set REFIN pin of ADS848x to reference selected by SJP1.	Not installed	Installed
SJP7	Short voltage node –dc to U6 pin 2 via R35.	Installed	N/A
SJP8	Short voltage node +dc to U7 pin 3.	Installed (1)	N /A
SJP9	Short –IN pin of U5 to ground at C45.	Not Installed	N/A

Table 2. Analog Circuitry Jumper Configurations

⁽¹⁾ Indicates factory-installed option.

3.2 Reference

The ADS848x can operate with an external reference voltage in the range of 3 V up to 4.2 V. It generates an on-chip 4.096-V reference voltage. The ADS848xEVM allows the user to select the external reference voltage from three sources. The first option is to use the internally-generated 4.096 V from the ADC. The other two options are to select from the onboard reference (U1) or a user-supplied voltage applied at pin 20 of P1. See Table 2 for solder jumper options for selecting from the various reference sources.

The reference voltage provides the scale factor for the conversion result. The input voltage is measured against the reference voltage. It is imperative the reference voltage be clean, low-noise, and well-decoupled.

The default configuration uses the internal on-chip reference.

4 Digital Interface

The ADS848xEVM is designed for easy interfacing to multiple platforms. The digital interface input and output signals of the converter are on connectors P2, P3, and J6. These connectors are 0.1-inch center, plug and socket connectors that allow the user to plug the ADS848xEVM into the various motherboard interface boards from Texas Instruments, or connect via ribbon cable to a variety of user development boards. Table 3 through Table 6 list the connector pinouts and jumper settings.

Description	Signal Name	Connector Pin No.		Signal Name Connector Pin N		Name Connector Pin No. Signal Name	Signal Name	Description
Not connected	DC_CS	P3.1	P3.2	+	Noninverting input channel			
Reserved	N/A	P3.3	P3.4	GND	Ground			
Reserved	N/A	P3.5	P3.6	GND	Ground			
Address line 0	A0	P3.7	P3.8	GND	Ground			
Address line 1	A1	P3.9	P3.10	GND	Ground			
Address line 2	A2	P3.11	P3.12	GND	Ground			
Reserved	N/A	P3.13	P3.14	GND	Ground			
Reserved	N/A	P3.15	P3.16	GND	Ground			
Convert Start	DC_CONVST	P3.17	P3.18	GND	Ground			
Interrupt pin	INTC	P3.19	P3.20	GND	Ground			

Table 3	. Pinout for	Parallel	Control	Connector P3
---------	--------------	----------	---------	---------------------

Conversions are initiated on the falling edge of the convert start signal. It is therefore critical to provide a clean, low-jitter, Convert Start (CONVST) pulse when measuring large amplitude and/or high-frequency input signals.

The CONVST signal can be applied to the ADS848x from the decoder outputs, at J6 pin 5, or from <u>connector</u> P3 pin 17. Address decoder SN74ACH138 can be used to generate the Read (RD) and CONVST signals to the converter. Jumpers W3 and W4 allow the user to assign these two signals to different addresses in memory. This option allows for the stacking of up to two ADS848xEVMs into processor memory. See Table 4 for jumper settings. If a Convert Start signal is applied directly to P3 pin 17, it is then necessary to short W6 pins 1-2. This configuration bypasses the decoder output selected by the position of W4.

Note: The evaluation module does not allow the Chip Select (\overline{CS}) line of the converter to be assigned to different memory locations. It is therefore suggested that the \overline{CS} line be grounded or wired to an appropriate signal of the processor.

Reference		Р	Pin No.		
Designator	Description	1-2	2-3		
14/4	Set digital buffer supply voltage to +5 V	Installed ⁽¹⁾	Not installed		
W1	Set digital buffer supply voltage to +3.3 V	Not Installed	Installed		
14/0	Apply inverted BUSY to INTC signal	Installed (1)	Not installed		
W2	Apply BUSY signal to INTC signal	Not installed	Installed		
14/0	Set RD signal to decoder output three [0x3].	Installed ⁽¹⁾	Not installed		
W3	Set RD signal to decoder output four [0x4].	Not installed	Installed		
14/4	Set CONVST signal to decoder output one [0x1].	Installed ⁽¹⁾	Not installed		
W4	Set CONVST signal to decoder output two [0x2].	Not Installed	Installed		
W5	Set DC_CS to CS of ADS848x	Installed ⁽¹⁾	N/A		
MC	Set DC_CONVST to CONVST of ADS848x.	Installed ⁽¹⁾	Installed		
W6	Set decoder output to CONVST of ADS848x.	Not installed	Installed (1)		

Table 4. Jumper Settings

⁽¹⁾ Indicates factory-installed option.

The data bus is available at connector P2; see Table 5 for pinout information.

Table 5.	Data	Bus	Connector P2	
----------	------	-----	--------------	--

Description	n Signal Name Connector Pin		Signal Name Connector Pin No. Signal Name	Connector Pin No.		Signal Name	Description
Data bit 0	DB0	P2.1	P2.2	GND	Ground		
Data bit 1	DB1	P2.3	P2.4	GN D	Ground		
Data bit 2	DB2	P2.5	P2.6	GND	Ground		
Data bit 3	DB3	P2.7	P2.8	GND	Ground		
Data bit 4	DB4	P2.9	P2.10	GND	Ground		
Data bit 5	DB5	P2.11	P2.12	GND	Ground		
Data bit 6	DB6	P2.13	P2.14	GND	Ground		
Data bit 7	DB7	P2.15	P2.16	GND	Ground		
Data bit 8	DB8	P2.17	P2.18	GND	Ground		
Data bit 9	DB9	P2.19	P2.20	GND	Ground		
Data bit 10	DB10	P2.21	P2.22	GND	Ground		
Data bit 11	DB11	P2.23	P2.24	GND	Ground		
Data bit 12	DB12	P2.25	P2.26	GND	Ground		
Data bit 13	DB13	P2.27	P2.28	GND	Ground		
Data bit 14	DB14	P2.29	P2.30	GND	Ground		

Description Signal Name Connector Pin No. Signal Name Description								
Data bit 15	DB15	P2.31	P2.32	GND	Ground			
Data bit 16	DB16	P2.33	P2.34	GND	Ground			
Data bit 17	DB17	P2.35	P2.36	GND	Ground			

Table 5. Data Bus Connector P2 (continued)

This evaluation module provides direct access to all the ADC input control and output signals via connector J4; see Table 6.

Description	Signal Name	Connector Pin No.		Signal Name	Description	
Chip Select signal	CS	J6.1	J6.2	GND	Ground	
Read signal	RD	J6.3	J6.4	GND	Ground	
Convert Start signal	CONVST	J6.5	J6.6	GND	Ground	
Byte signal	BYTE	J6.7	J6.8	GND	Ground	
18- or 16-bit bus signal	BUS18/16	J6.9	J6.10	GND	Ground	
Busy signal	BUSY	J6.11	J6.12	GND	Ground	

Table 6. Pinout for Converter Control Connector, J6

5 Power Supplies

The EVM accepts four power supplies.

- A dual ±VA dc supply for the dual-supply operational amplifiers. Recommend ±6-VDC supply.
- A single +5-VDC supply for analog section of the board (analog-to-digital [A/D] + Reference).
- A single +5-V or +3.3-VDC supply for digital section of the board (A/D + address decoder + buffers).

These voltages can be provided in two ways.

1. Wire in voltages at test points on the EVM; Table 7 summarizes this option.

Table 7.	Power-Sup	oply Test	Points
----------	-----------	-----------	--------

Test Point	Signal	Description
TP6	+BVDD	Apply +3.3 VDC or +5 VDC. See ADC data sheet for full range.
TP3	+AVCC	Apply +5 VDC.
TP4	+VA	Apply +6 VDC. Positive supply for amplifier.
TP5	–VA	Apply –6 VDC. Negative supply for amplifier.

 Use the power connector J5, and derive the voltages elsewhere. The pinout for this connector is shown in Table 8. If using this connector, then set W1 jumper to connect +3.3 VD or +5 VD from connector to +BVDD. Short between pins 1-2 to select +5 VDC, or short between pins 2-3 to select +3.3 VDC as the source for the digital buffer voltage supply (+BVDD).

Signal Power	ignal Power Connect		Signal		
+VA (+6 V)	1	2	-VA (-6 V)		
+5 VA	3	4	N/C		
DGND	5	6	AGND		
N/C	7	8	N/C		
+3.3 VD	9	10	+5 VD		

6 Using the ADS848xEVM

The ADS848xEVM functions as a reference design, a prototyping board, and a software test platform.

6.1 As a Reference Design

As a reference design, the ADS848xEVM contains the essential circuitry to showcase the analog-to-digital converter. This essential circuitry includes the input amplifier, reference circuit, and buffers. The ADS848xEVM analog input circuit is optimized for a wide bandwidth signal; therefore, the user may need to adjust the input buffer circuitry to better suit specific needs. In ac-type applications where signal distortion is a concern, the user should use high-quality capacitors such as mica, polypropylene, or COG-type capacitors in the signal path. In applications where the input is multiplexed, the A/D input resistor and capacitor may need to be adjusted further.

6.2 As a Prototype Board

As a prototype board, the ADS848xEVM features amplifiers in a standard 8-pin SOIC package. The board contains many resistor pads that allow the user to experiment with a host of circuits as desired. The ADS848xEVM can be used to evaluate both dual- and single-supply amplifiers in both inverting and noninverting configurations. The ADS848xEVM comes installed with a dual-supply amplifier that allows the user to take advantage of the full input voltage range of the converter. For applications that require single-supply operation and a smaller input voltage range, the THS4031 can be replaced with the single-supply amplifier such as the <u>OPA300</u> or <u>OPA350</u>. Pad jumper SJP3 should be shorted between pads 1 and 2. This configuration shorts the minus supply pin of the amplifier to ground. Positive supply voltage can be applied at test point TP4 or at connector J5 pin 1.

6.3 As a Software Test Platform

As a software test platform, connectors P1, P2, and P3 plug into the parallel interface connectors of the 5-6K Interface Board. The 5-6K Interface Board sits on the C5000[™] and C6000[™] digital signal processor starter kits (DSK). The ADS848xEVM is then mapped into the processor memory space. The 5-6k Interface Board also provides an area for signal conditioning. This area can be used to install application circuit(s) for digitization by the ADS848x analog-to-digital converter. For more information, see the 5-6K Interface Board User's Guide (SLAU104).

For the software engineer, the ADS848xEVM provides a simple platform for interfacing to the converter. The EVM provides standard 0.1-inch headers and sockets to wire into prototype boards. The user must provide only three address lines (A2, A1, and A0) and address valid line (DC_CS) to connector P2. To select which address combinations generate RD and CONVST, set the jumpers as shown in Table 4. Recall that the Chip Select (CS) signal is not memory-mapped or tied to P2; therefore, it must be controlled by a general-purpose pin or shorted to ground at J3 pin 1. If address decoding is not required, the EVM provides direct access to converter data bus by P3 and control by J3.

7 Related Documentation from Texas Instruments

To obtain a copy of any of the following TI documents, call the Texas Instruments Literature Response Center at (800) 477-8924 or the Product Information Center (PIC) at (972) 644-5580. When ordering, identify this user's guide by its title and literature number. Updated documents can also be obtained through the TI Web site at www.ti.com.

Data Sheets:	Literature Number:
ADS8482	<u>SLAS385</u>
ADS8484	<u>SLAS511</u>
REF3240	<u>SBVS058</u>
REF3225	<u>SBVS058</u>
SN74AHC138	<u>SCLS258</u>
SN74AHC245	<u>SCLS230</u>
SN74AHC1G04	SCLS318
THS4031	SLOS224
THS4032	SLOS224

Appendix A ADS848xEVM Bill of Materials

Table A-1 lists the complete bill of materials for the ADS848xEVM. The schematic diagram also is provided for reference. Contact the Product Information Center or send an e-mail to <u>dataconvapps@list.ti.com</u> for questions regarding this EVM.

Qty	Value	Reference Designators	Footprint	Manufacturer	Manufacturer's Part No.	Description
3	0	R16 R17 R33	603	Panasonic - ECG or Alternate	ERJ-3GEY0R00V	RES 0Ω 1/16W 5% 0603 SMD
4	0	R9 R19 R22 R31	805	Panasonic - ECG or Alternate	ERJ-6GEY0R00V	RES 0.0Ω 1/10W 5% 0805 SMD
2	5.1	R39 R40	805	Panasonic - ECG or Alternate	ERJ-6GEYJ5R1V	RES 5.1Ω 1/10W 1% 0805
3	33	R5 R25 R26	603	Yageo America or Alternate	9C06031A33R0FKHF T	RES 33.0Ω 1/10W 1% 0603 SMD
2	49.9	R1 R2	603	Panasonic - ECG or Alternate	ERJ-3EKF49R9V	RES 49.9Ω 1/10W 1% 0603 SMD
3	300	R4 R27 R29	603	Yageo America or Alternate	RC0603FR-07300RL	RES 300Ω 1/10W 1% 0603 SMD
3	300	R36 R37 R38	805	Yageo America or Alternate	9C08052A3000FKHF T	RES 300Ω 1/8W 1% 0805 SMD
1	10k	R24	BOURNS_3296 Y	Bourns Inc.	3296Y-1-103	POT 10kΩ 3/8" SQ CERM SL MT
5	10k	R41–R45	603	Panasonic - ECG or Alternate	ERJ-3EKF1002V	RES 10.0kΩ 1/10W 1% 0603 SMD
1	10k	R46	805	Panasonic - ECG or Alternate	ERJ-6GEYJ103V	RES 10kΩ 1/8W 5% 0805 SMD
3	NI	R3 R6 R28	603	Not Installed	Not Installed	
11	NI	R7 R8 R10 R12 R13 R18 R20 R21 R32 R34 R35	805	Not Installed	Not Installed	
2	50	RP1 RP2	CTS_742	CTS Corporation	742C163470JTR	RES Array 47Ω 16TERM 8RES SMD
1	50	RP4	CTS_742_4RE S	CTS Corporation	742C083510JTR	RES Array 51Ω 8TERM 4RES SMD
1	1K	RP3	CTS_742	CTS Corporation	742C163102JTR	RES Array 1kΩ 16TERM 8RES SMD
4	MMZ2012R601A	L1 L2 L3 L4	805	TDK Corporation	MMZ2012R601A	FERRITE Chip 600Ω 500mA 0805
13	1000pF	C28–C36 C62–C65	603	TDK Corporation or Alternate	C1608X7R1H102K	CAP CER 1000PF 50V XR7 10% 0603
1	2200pF	C45	603	TDK Corporation or Alternate	C1608COG1H222J	CAP CER 2200PF 50V XR7 10% 0603
6	0.1µF	C66–C71	603	TDK Corporation or Alternate	C1608X7R1E104K	CAP CER 0.10µF 25V X7R 10% 0603
2	0.47µF	C1 C2	603	TDK Corporation or Alternate	C1608X5R1A474K	CAP CER 0.47µF 10V X5R 10% 0603
3	1μF	C3 C5 C7	603	TDK Corporation or Alternate	C1608X5R1A105KT	CAP CER 1.0µF 10V X5R 10% 0603
8	1μF	C9–C14 C41, C42	805	TDK Corporation or Alternate	C2012X7R1E105K	CAP CER 1.0µF 25V X7R 0805 T/R
8	2.2µF	C20–C27	603	TDK Corporation or Alternate	C1608X5R1A225MT	CAP CER 2.2µF 6.3V X5R 20% 0603
2	10µF	C38 C40	805	TDK Corporation or Alternate	C2012X5R0J106M	CAP CER 10µF 6.3V X5R 20% 0805
8	10µF	C48–C55	1206	TDK Corporation or Alternate	C3216X5R1C106M	CAP CER 10µF 16V X5R 20% 1206
1	22µF	C6	805	TDK Corporation or Alternate	C2012X5R0J226M	CAP CER 22µF 6.3V X5R 20% 0805
1	47µF	C37	1206	TDK Corporation or Alternate	C3216X5R0J476M	CAP CER 47µF 6.3V X5R 20% 1206

Table A-1. Bill of Materials

	Table A-1. bill of Materials				(continued)		
Qty	Value	Reference Designators	Footprint	Manufacturer	Manufacturer's Part No.	Description	
14	NI	C4 C8 C15 C16 C18 C19 C46 C47 C56–C61	603	Not Installed	Not Installed		
4	NI	C13 C39 C43–C44	805	Not Installed	Not Installed		
1	REF3225	U1	6-SOT(DBV)	Texas Instruments	REF3225AIDBVR	4.096V 4ppm/°C, 100µA SOT23-6 Series (Bandgap) Voltage Reference	
1	REF3240	U2	6-SOT(DBV)	Texas Instruments	REF3240AIDBVR	4.096V 4ppm/°C, 100µA SOT23-6 Series (Bandgap) Voltage Reference	
1	NI	U3	8-SOP(D)	Not Installed	Not Installed	SOIC reference alternate	
1	THS4032	U4	8-SOP(D)	Texas Instruments	THS4032CD	100-MHz Low Noise Voltage-Feedback Amplifier, Dual	
1	ADS8482/ADS8484	U5	48-QFN(RGZ)	Texas Instruments	ADS848xIBRGZR	ADS848x 18-bit, 1-MSPS/1.25-MSPS ADC	
2	THS4031	U6 U7	8-SOP(D)	Texas Instruments	THS4031IDR	100-MHz low-noise high-speed amplifier	
4	SN74AHC245PWR	U8–U11	20-TSSOP(PW)	Texas Instruments	SN74AHC245PWR	Octal Bus Transceiver, 3-State	
1	SN74AHC1G04DBV	U12	5-SOT(DBV)	Texas Instruments	SN74AHC1G04DBVR	Single Inverter Gate	
1	SN74AHC138PWR	U13	16-TSSOP(PW)	Texas Instruments	SN74AHC138PWR	3-Line To 8-Line Decoder / Demultiplexer	
2	SMA_PCB_MT	J1 J2	SMA_JACK	Johnson Components Inc.	142-0701-301	Right Angle SMA Connector	
2	NI	J3 J4	SMA_JACK	Not Installed	Not Installed		
1	5X2X.1	J5	5X2X.1_SMT_ SOCKET	Samtec	SSW-110-22-S-D-VS	0.025" SMT SOCKET - BOTTOM SIDE OF PWB	
1				Samtec	TSM-105-91-T-D-V-P	0.025" SMT Plug - top side of PWB	
1	6X2X.1	J6	6X2X.1_SMT_ PLUG_&_ SOCKET	Samtec	TSM-106-91-T-D-V-P	0.025" SMT Plug - top side of PWB	
2	10X2X.1	P1 P3	10X2X.1_SMT_ PLUG_&_ SOCKET	Samtec	SSW-110-22-S-D-VS	0.025" SMT SOCKET - BOTTOM SIDE OF PWB	
2	10X2X.1			Samtec	TSM-110-01-T-D-V-P	0.025" SMT Plug - top side of PWB	
1	18X2X.1_SMT_PLU G _&_SOCKET	P2	18X2.1_SMT_ PLUG_&_ SOCKET	Samtec	SSW-118-22-S-D-VS	0.025" SMT Socket - bottom side of PWB	
1			Samtec	TSM-118-01-T-D- V-P	0.025" SMT Plug - top side of PWB		
5	3POS_JUMPER	W1-W4 W6	3pos_jump	Samtec	TSW-103-07-L-S	3 Position Jumper _ 0.1" spacing	
1	3POS_JUMPER	W5	2pos_jump	Samtec	.TSW-102-07-L-S	2 Position Jumper _ 0.1" spacing	
4	SJP2	SJP2 SJP7 SJP8 SJP9	SJP2	Not Installed	Not Installed		
4	SJP3	SJP1 SJP3 SJP4 SJP6	SJP3	Not Installed	Not Installed		
8	TP_0.025	TP3–TP7 TP9 TP11 TP12	test_point2	Keystone Electronics	5000K-ND	Test point PC MINI 0.040"D Red	
6	TP_0.025	TP1 TP2 TP8 TP10 TP13 TP14	test_point2	Keystone Electronics	5001K-ND	Test point PC MINI 0.040"D Black	

Table A-1. Bill of Materials (continued)

Appendix B ADS848xEVM LAYOUT

This appendix contains the EVM layout.

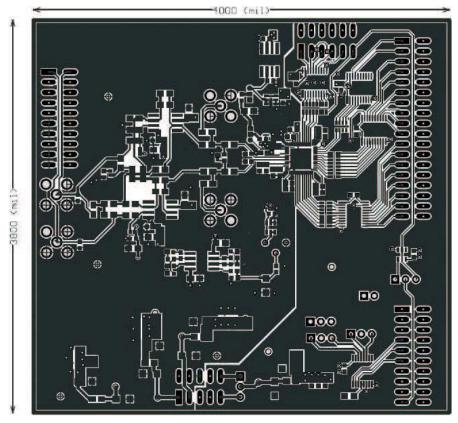


Figure B-1. Top Layer – Layer 1

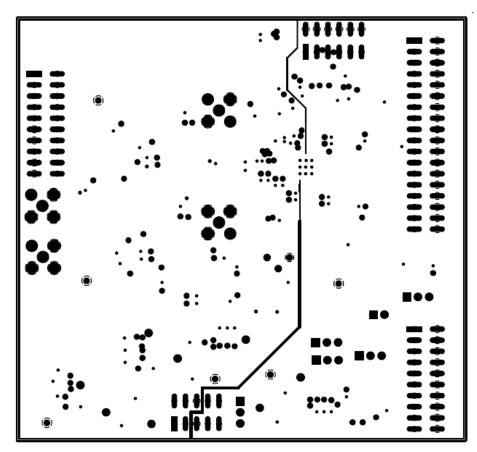


Figure B-2. Ground Plane – Layer 2

Appendix B

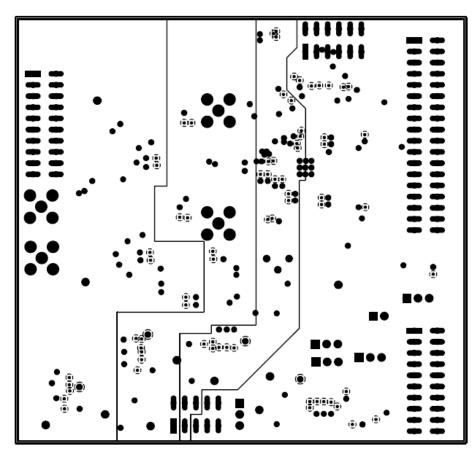


Figure B-3. Power Plane – Layer 3

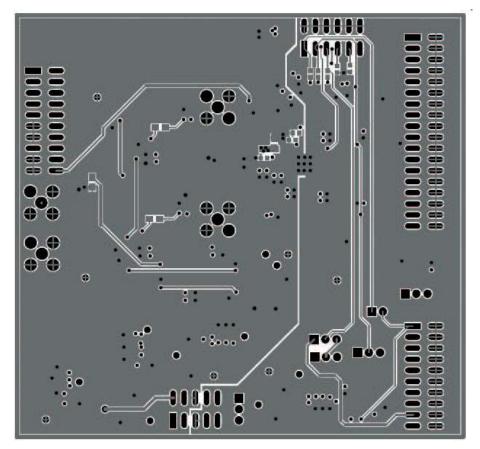


Figure B-4. Bottom Layer – Layer 4

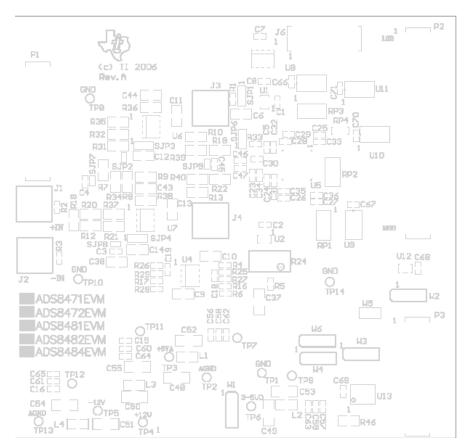
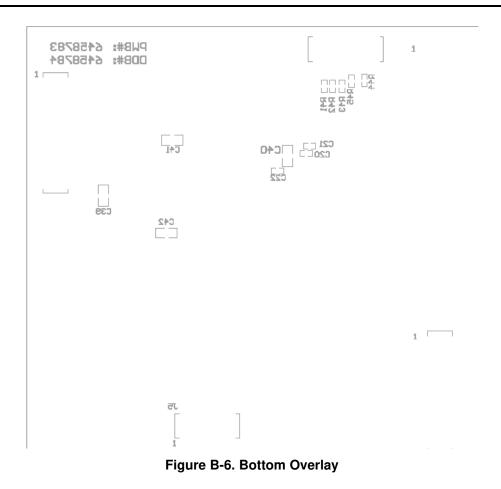
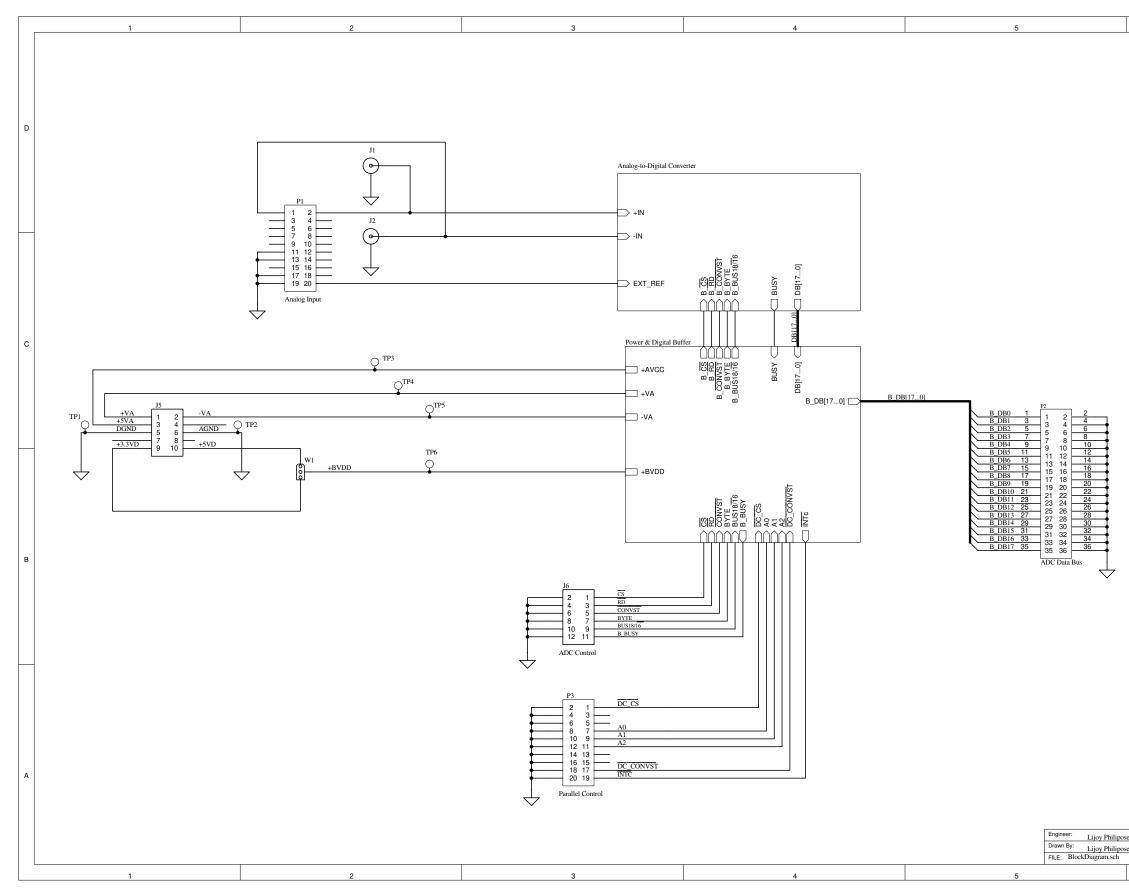
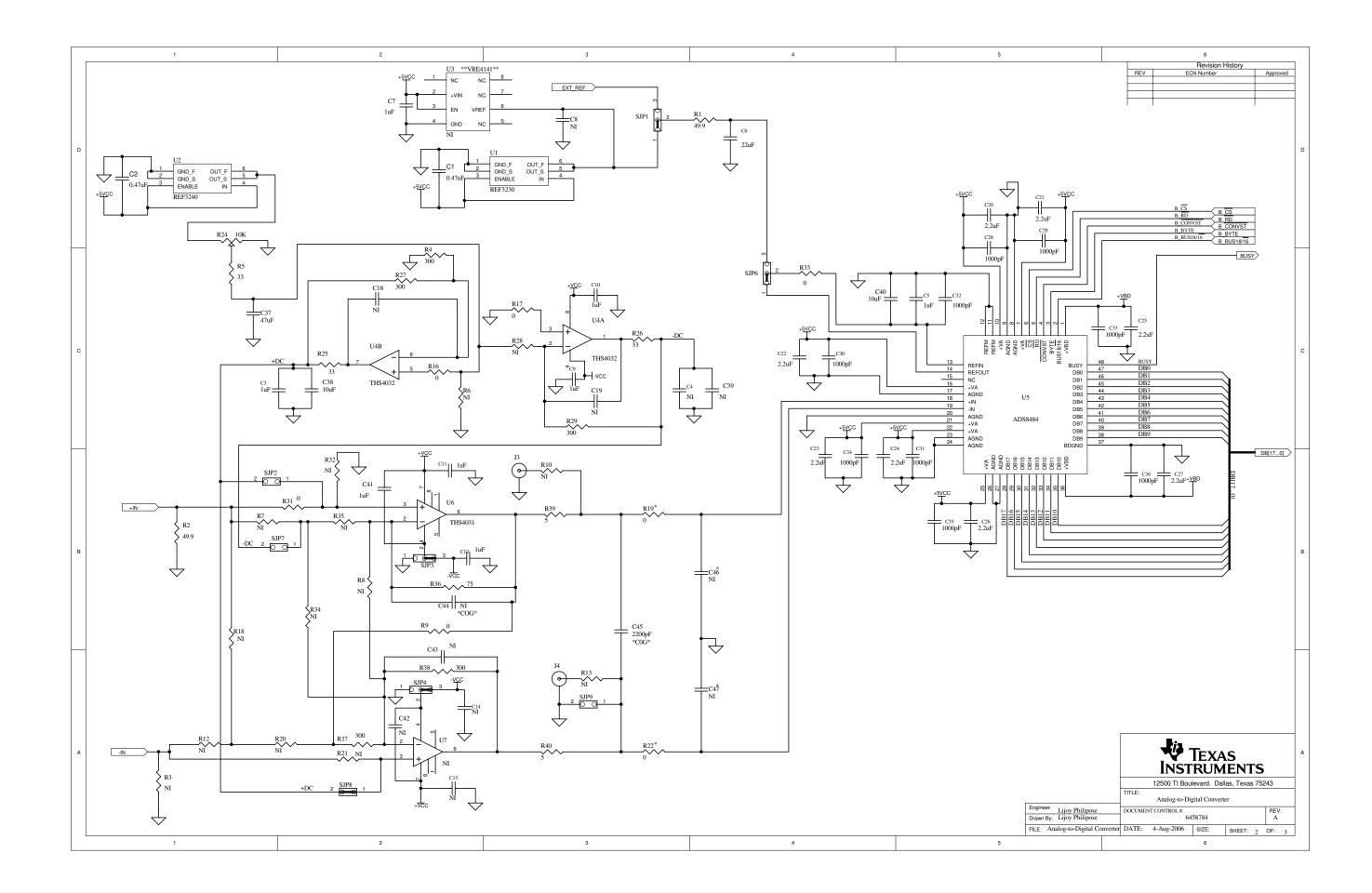
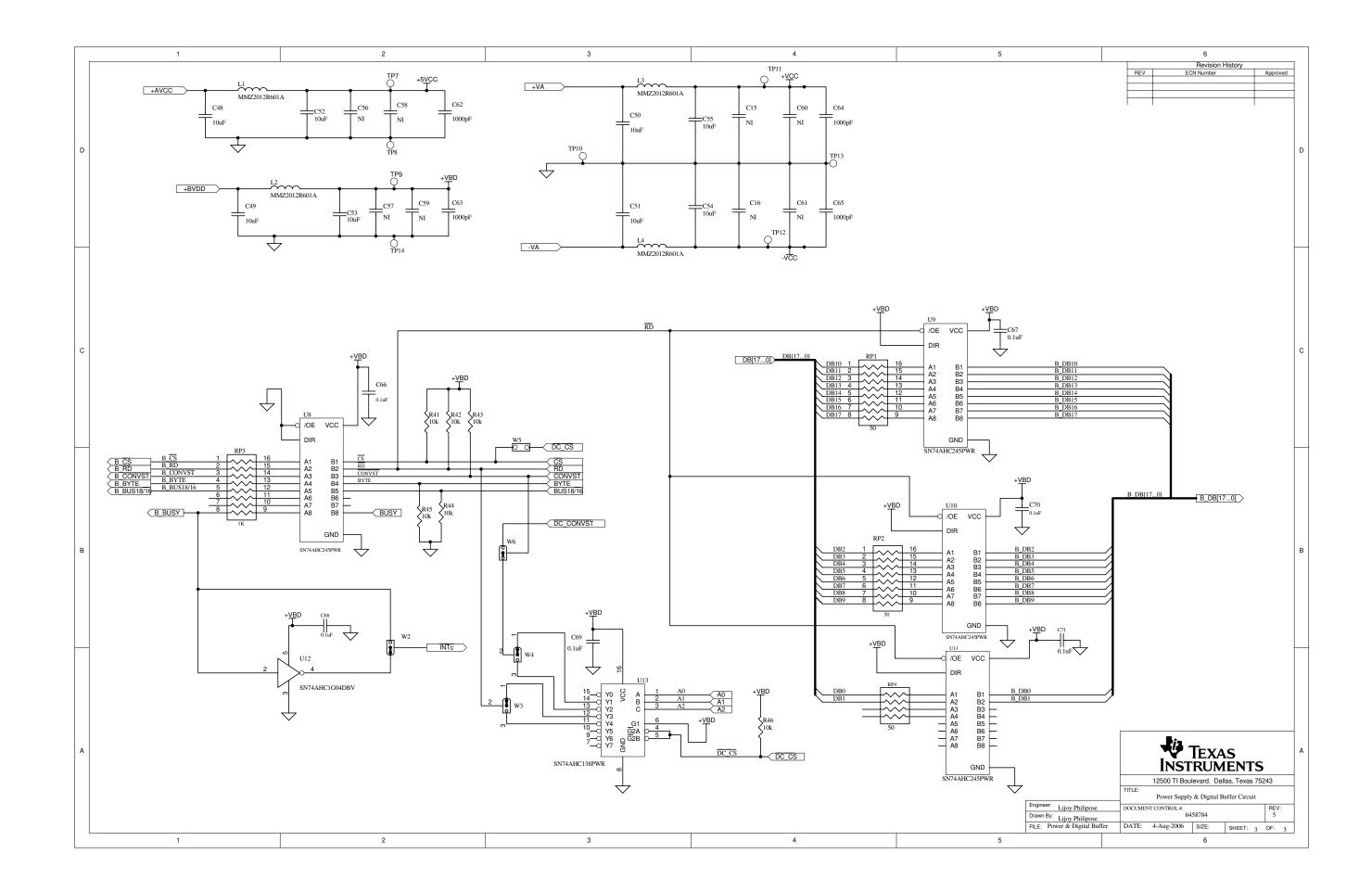



Figure B-5. Top Overlay






Appendix C ADS848xEVM Schematic

The ADS848xEVM schematic is appended to this page.

1							
		-		6 Revision I	listory		1
		REV	EC	N Number		Approved	
		-					
							D
							с
							В
	Г		.				
			i3 -	Ггул	c		A
			INST		S IENIT	re l	
	F						
	-	TITLE:	12500 TI Bou				
			ADS8481/AD	S8482EVM	Block Diag		
os os		DOCUMENT	CONTROL #: 64	58784		REV: A	
)S		DATE:	4-Aug-2006	SIZE:	SHEET:	1 OF: 3	
				6			

EVALUATION BOARD/KIT IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not exclusive.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit <u>www.ti.com/esh</u>.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of 0 V to 5 V and the output voltage range of 0 V to 5 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 60°C. The EVM is designed to operate properly with certain components above 85°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Clocks and Timers	www.ti.com/clocks	Digital Control	www.ti.com/digitalcontrol
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated