April 1992 Revised March 2002

FAIRCHILD

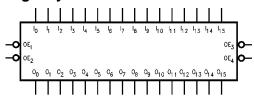
SEMICONDUCTOR

74ABT162244 16-Bit Buffer/Line Driver with **25** Ω Series Resistors in the Outputs

General Description

The ABT162244 contains sixteen non-inverting buffers with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus oriented transmitter/receiver. The device is nibble controlled. Individual 3-STATE control inputs can be shorted together for 8-bit or 16-bit operation.

The 25Ω series resistors in the outputs reduce ringing and eliminate the need for external resistors.


Features

- Separate control logic for each nibble
- 16-bit version of the ABT2244
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability

Ordering Code:

Order Number	Package Number	Package Description
74ABT162244CSSC	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74ABT162244CSSX	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74ABT162244CMTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
74ABT162244MTDX	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Logic Symbol

Pin Descriptions

Pin Names	Description				
OE n	Output Enable Input (Active LOW)				
I ₀ -I ₁₅	Inputs				
O ₀ -O ₁₅	Outputs				

Connection Diagram OE1 OF. 00 01 GND 02 03 Vcc 0, 05 GND 39 06 38 37 07 36 08 0, 3 GND 3 33 010 10 32 011 **h**1

V_{CC}

012

013 20

GND

014 -

015

0E

21

23

24

3

28 - GND

27

26

25

Vcc 30

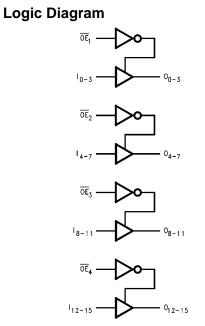
12 29

13

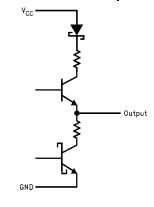
14

¹15

- OE,


74ABT162244 16-Bit Buffer/Line Driver with 25 Ω Series Resistors in the Outputs

© 2002 Fairchild Semiconductor Corporation DS010987


74ABT162244

Truth Tables

In	puts	Outputs
OE ₁	I ₀ –I ₃	O ₀ –O ₃
L	L	L
L	н	н
Н	Х	Z
In	puts	Outputs
OE ₃	I ₈ –I ₁₁	0 ₈ –0 ₁₁
L	L	L
L	н	н
Н	Х	Z
In	puts	Outputs
OE ₂	I ₄ –I ₇	0 ₄ –0 ₇
OE ₂	l₄−l ₇ ∟	0 ₄ -0 ₇
L	L	L
L L H	L H	L H
L L H	L H X	L H Z

Schematic of each Output

н H = HIGH Voltage Level

L = LOW Voltage Level X = Immaterial Z = High Impedance

L

Functional Description

The ABT162244 contains sixteen non-inverting buffers with 3-STATE outputs. The device is nibble (4 bits) controlled with each nibble functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation.

н

Х

н

Ζ

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

	-
Storage Temperature	-65°C to +150°C
Ambient Temperature under Bias	-55°C to +125°C
Junction Temperature under Bias	$-55^{\circ}C$ to $+150^{\circ}C$
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 2)	-0.5V to +7.0V
Input Current (Note 2)	-30 mA to +5.0 mA
Voltage Applied to Any Output	
in the Disabled or	
Power-Off State	-0.5V to 5.5V
in the HIGH State	-0.5V to V _{CC}
Current Applied to Output	
in LOW State (Max)	twice the rated I _{OL} (mA)
DC Latchup Source Current	–500 mA
Over Voltage Latchup (I/O)	10V

Recommended Operating Conditions

Free Air Ambient Temperature	$-40^{\circ}C$ to $+85^{\circ}C$
Supply Voltage	+4.5V to +5.5V
Minimum Input Edge Rate ($\Delta V/\Delta t$)	
Data Input	50 mV/ns
Enable Input	20 mV/ns

74ABT162244

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

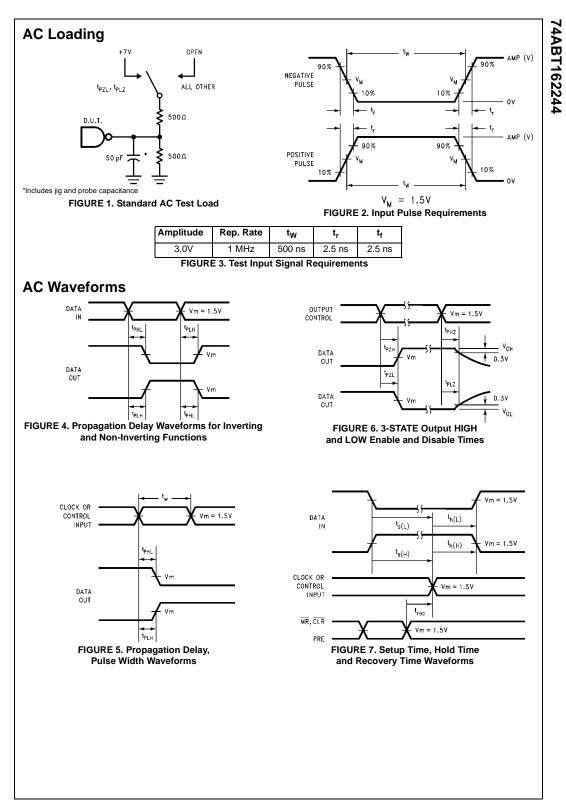
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

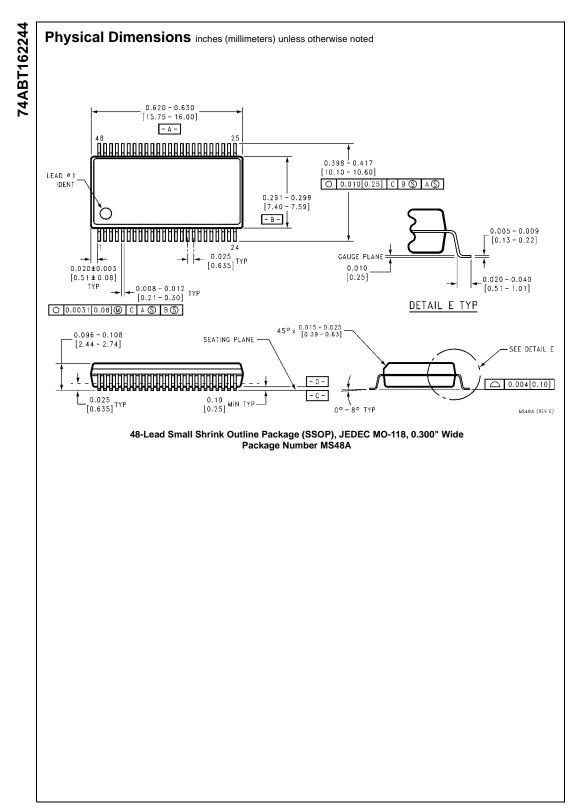
Symbol	Parame	ter	Min	Тур	Max	Units	V _{cc}	Conditions
VIH	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Volta	ge			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage		2.5			V	Min	I _{OH} = -3 mA
			2.0			V	Min	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage				0.8	V	Min	I _{OL} = 12 mA
I _{IH}	Input HIGH Current				1	μΑ	Max	V _{IN} = 2.7V (Note 3)
					1		IVIAX	$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current Brea	akdown Test			7	μA	Max	V _{IN} = 7.0V
I _{IL}	Input LOW Current				-1	μA	Max	V _{IN} = 0.5V (Note 3)
					-1	μΑ	IVIAX	$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{OZH}	Output Leakage Current				10	μA	0-5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
I _{OZL}	Output Leakage Current				-10	μA	0-5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
I _{OS}	Output Short-Circuit Curr	rent	-100		-275	mA	Max	$V_{OUT} = 0.0V$
I _{CEX}	Output High Leakage Cu	irrent			50	μΑ	Max	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Test				100	μΑ	0.0	V _{OUT} = 5.5V; All Others GND
I _{CCH}	Power Supply Current				2.0	mA	Max	All Outputs HIGH
I _{CCL}	Power Supply Current				60	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Current				2.0	mA	Max	$\overline{OE}_n = V_{CC}$
								All Others at V _{CC} or GND
ICCT	Additional I _{CC} /Input	Outputs Enabled			3.0	mA		$V_{I} = V_{CC} - 2.1V$
		Outputs 3-STATE			3.0	mA	Max	Enable Input V _I = V _{CC} - 2.1V
		Outputs 3-STATE			50	μA		Data Input $V_I = V_{CC} - 2.1V$
								All Others at V _{CC} or GND
ICCD	Dynamic I _{CC} No Load (Note 3)				0.1	mA/	Mox	Outputs OPEN
						MHz	Max	$\overline{OE}_n = GND$
								One Bit Toggling, 50% Duty Cycl

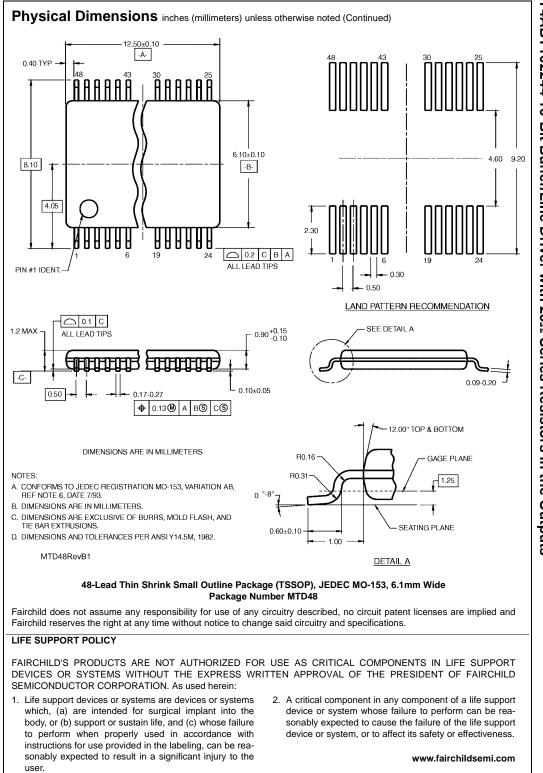
Note 3: Guaranteed, but not tested.

74ABT162244


AC Electrical Characteristics

Symbol	Parameter		$T_A = +25^{\circ}C$ $V_{CC} = +5V$ $C_L = 50 \text{ pF}$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V - 5.5V$ $C_L = 50 \text{ pF}$		Units
		Min	Тур	Max	Min	Max	
t _{PLH}	Propagation	1.0	2.4	3.9	1.0	3.9	ns
t _{PHL}	Delay Data to Outputs	1.0	3.2	4.7	1.0	4.7	115
t _{PZH}	Output	1.5	3.5	6.3	1.5	6.3	20
t _{PZL}	Enable Time	1.5	4.2	6.9	1.5	6.9	ns
t _{PHZ}	Output	1.0	4.2	6.7	1.0	6.7	
t _{PLZ}	Disable Time	1.0	3.8	6.7	1.0	6.7	ns


Capacitance


Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	$V_{CC} = 0.0V$
C _{OUT} (Note 4)	Output Capacitance	9.0	pF	$V_{CC} = 5.0V$

Note 4: C_{OUT} is measured at frequency f = 1 MHz per MIL-STD-883, Method 3012.

www.fairchildsemi.com

www.fairchildsemi.com