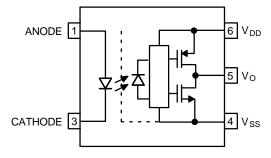

Onsemi

2.5 A Output Current, **High-Speed, MOSFET/IGBT** Gate Drive Optocoupler in OPTOPLANAR[®] Wide-Body SOP 5-Pin

MARKING DIAGRAM


SOIC6 W LESS PIN 2 CASE 752AG

8384 = Device number, e.g., '8384' for FOD8384

- = DIN EN/IEC60747-5-5 Option (Only Appears V on Component Ordered with This Option)
- П = Plant Code
- Х = Last Digit Year Code
- YΥ = Two-digit Work Week
- KK = Lot Traceability Code
- W = Package Assembly Code

FUNCTIONAL SCHEMATIC

ORDERING INFORMATION

See detailed ordering and shipping information on page 14 of this data sheet.

Related Resources

- FOD3184 3 A Output Current, High-Speed MOSFET/IGBT Gate Drive **Optocoupler Datasheet**
- <u>https://www.onsemi.com/products/interfaces/</u> igbt-mosfet-gate-drivers-optocouplers

FOD8384

Description

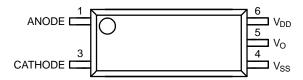
The FOD8384 is a 2.5 A output current gate drive optocoupler capable of driving medium-power IGBT/ MOSFETs. It is ideally suited for fast-switching driving of power IGBT and MOSFET used in motor-control inverter applications and high-performance power systems.

The FOD8384 utilizes onsemi's OPTOPLANAR coplanar packaging technology and optimized IC design to achieve reliable high-insulation voltage and high-noise immunity.

It consists of an Aluminum Gallium Arsenide (AlGaAs) Light-Emitting Diode (LED) optically coupled to an integrated circuit with a high-speed driver for push-pull MOSFET output stage. The device is housed in a wide body, 5-pin, small-outline, plastic package.

Features

- Reliable and High–Voltage Insulation with Greater than 8 mm Creepage and Clearance Distance and 0.5 mm Internal Insulation Distance
- 2.5 A Output Current Driving Capability for Medium–Power **IGBT/MOSFET**
 - P-Channel MOSFET at Output Stage Enables Output Voltage Swing Close to Supply Rail
- 35 kV/µs Minimum Common Mode Rejection
- Wide Supply Voltage Range: 15 V to 30 V
- Fast Switching Speed Over Full Operating Temperature Range
 - ♦ 210 ns Maximum Propagation Delay
 - ◆ 65 ns Maximum Pulse-Width Distortion
- Under-Voltage Lockout (UVLO) with Hysteresis
- Extended Industrial Temperate Range: -40°C to 100°C
- Safety and Regulatory Approvals:
 - ◆ UL1577, 5,000 VACRMS for 1 Minute
 - ◆ DIN-EN/IEC60747-5-5, 1,414 V Peak Working
- Insulation Voltage
- These are Pb–Free Devices


Applications

- AC and Brushless DC Motor Drives
- Industrial Inverter
- Uninterruptible Power Supply
- Induction Heating
- Isolated IGBT/Power MOSFET Gate Drive

TRUTH TABLE

LED	V _{DD} – V _{SS} "Positive Going" (Turn–on)	V _{DD} _V _{SS} "Positive Going" (Turn-off)	vo
Off	0 V to 30 V	0 V to 30 V	LOW
On	0 V to 11.5 V	0 V to 10 V	LOW
On	11.5 V to 14.5 V	10 V to 13 V	Transition
On	14.5 V to 30 V	13 V to 30 V	HIGH

Pin Configuration

PIN DEFINITIONS

Pin No.	Name	Description
1	Anode	LED Anode
3	Cathode	LED Cathode
4	V _{SS}	Negative Supply Voltage
5	Vo	Output Voltage
6	V _{DD}	Positive Supply Voltage

SAFETY AND INSULATION RATINGS (As per DIN EN/IEC60747–5–5, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.)

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Installation Classifications per DIN VDE 0110/1.89 Table 1				
	For Rated Mains Voltage < 150 V _{RMS}	-	I–IV	-	
	For Rated Mains Voltage < 300 V _{RMS}	-	I–IV	-]
	For Rated Mains Voltage < 450 V _{RMS}	-	I–IIII	-]
	For Rated Mains Voltage < 600 V _{RMS}	-	I–III	-]
	Climatic Classification	-	40/100/21	-	
	Pollution Degree (DIN VDE 0110/1.89)	-	2	-	
CTI	Comparative Tracking Index	175	-	-	
V_{PR}	Input–to–Output Test Voltage, Method b, $V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ s, Partial Discharge < 5 pC	2651	-	-	
	Input–to–Output Test Voltage, Method a, $V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test with $t_m = 10$ s, Partial Discharge < 5 pC	2262	-	-	
VIORM	Maximum Working Insulation Voltage	1414	-	-	V _{peak}
VIOTM	Highest Allowable Over Voltage	8000	-	-	V _{peak}
	External Creepage	8.0	-	-	mm
	External Clearance	8.0	-	-	mm
	Insulation Thickness	0.5	-	-	mm
	Safety Limit Values – Maximum Values Allowed in the Event of a Failure				
Τ _S	Case Temperature	150	-	-	°C
I _{S,INPUT}	Input Current	200	-	-	mA
Ps,output	Output Power	600	-	-	mW
R _{IO}	Insulation Resistance at T _S , V _{IO} = 500 V	10 ⁹	-	-	Ω

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless otherwise specified.)

Symbol	Parameter	Value	Unit
T _{STG}	Storage Temperature	-40 to +125	°C
T _{OPR}	Operating Temperature	-40 to +100	°C
Τ _J	Junction Temperature	-40 to +125	°C
T _{SOL}	Lead Solder Temperature Refer to Reflow Temperature Profile on page 13.	260 for 10 s	°C
I _{F(AVG)}	Average Input Current	25	mA
V _R	Reverse Input Voltage	5.0	V
I _{O(PEAK)}	Peak Output Current (Note 1)	3.0	А
$V_{DD} - V_{SS}$	Supply Voltage	-0.5 to 35	V
V _{O(PEAK)}	Peak Output Voltage	0 to V _{DD}	V
PDI	Input Power Dissipation (Note 2, 4)	45	mW
PD _O	Output Power Dissipation (Note 3, 4)	500	mW

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Maximum pulse width = 10 μ s, maximum duty cycle = 0.2%. 2. No derating required across operating temperature range.

3. Derate linearly from 25°C at a rate of 5.2 mW/°C.

4. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Max	Unit
T _A	Ambient Operating Temperature		100	°C
$V_{DD} - V_{SS}$	Supply Voltage	15	30	V
I _{F(ON)}	Input Current (ON)		16	mA
V _{F(OFF)}	Input Voltage (OFF)	0	0.8	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ISOLATION CHARACTERISTICS (Apply over all recommended conditions; typical value is measured at $T_A = 25^{\circ}C.$)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ISO}	Input–Output Isolation Voltage	T_{A} = 25°C, R.H. < 50%, t = 60 s, I_{I-O} \leq 20 $\mu A,$ 50 Hz (Note 5, 6)	5,000	-	-	V _{RMS}
R _{ISO}	Isolation Resistance	V _{I-O} = 500 V (Note 5)	-	10 ¹¹	-	Ω
C _{ISO}	Isolation Capacitance	$V_{I-O} = 0$ V, Frequency = 1.0 MHz (Note 6)	-	1	-	pF

5. Device is considered a two-terminal device: pins 1 and 3 are shorted together and pins 4, 5 and 6 are shorted together.

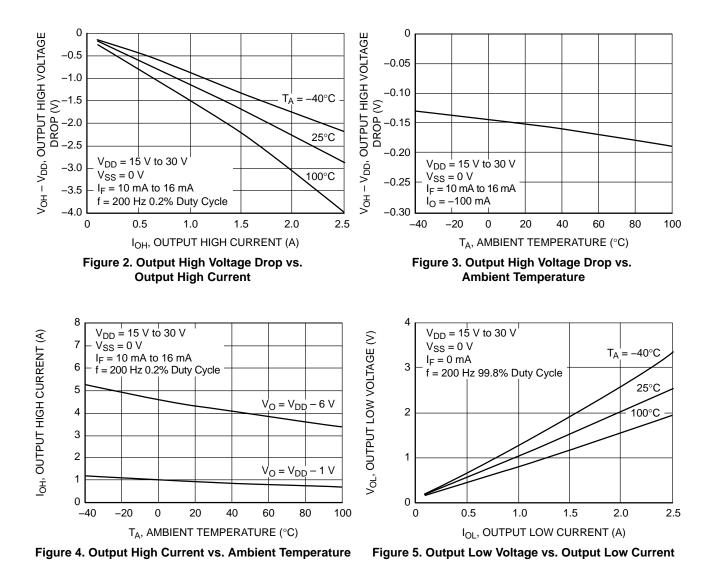
6. 5,000 VAC_{RMS} for 1 minute duration is equivalent to 6,000 VAC_{RMS} for 1 second duration.

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit	Figure
VF	Input Forward Voltage	l _F = 10 mA	1.10	1.43	1.80	V	17
$\Delta(V_{F} / T_{A})$	Temperature Coefficient of Forward Voltage		-	-1.5	-	mV/°C	
BV _R	Input Reverse Breakdown Voltage	I _R = 10 μA	5	-	-	V	
C _{IN}	Input Capacitance	f = 1 MHz, V _F = 0 V	-	60	-	pF	
I _{OH}	High Level Output Current (Note 1)	$V_{OH} = V_{DD} - 1 V$	-	-0.9	-0.5	А	2, 4
		$V_{OH} = V_{DD} - 6 V$	-	_	-2.5	А	2, 4, 20
I _{OL}	Low Level Output Current (Note 1)	$V_{OL} = V_{SS} + 1 V$	0.5	1.0	-	А	5, 7
		$V_{OL} = V_{SS} + 6 V$	2.5	_	-	А	5, 7, 219
V _{OH}	High Level Output Voltage (Note 7, 8)	I _F = 10 mA, I _O = -2.5 A	V _{DD} – 7.0	_	-	V	2
		I _F = 10 mA, I _O = -100 mA	V _{DD} – 0.5	_	-	V	4, 3, 21
V _{OL}	Low Level Output Voltage (Note 7, 8)	I _F = 0 mA, I _O = 2.5 A	-	_	V _{SS} + 7.0	V	5
		I _F = 0 mA, I _O = 100 mA	-	_	V _{SS} + 0.5	V	6, 22
I _{DDH}	High Level Supply Current	V_{O} = Open, I_{F} = 7 to 16 mA	-	2.9	3.5	mA	8, 9, 23
I _{DDL}	Low Level Supply Current	$V_{O =}$ Open, $V_{F} = 0$ to 0.8 V	-	2.8	3.5	mA	8, 9, 24
I _{FLH}	Threshold Input Current Low-to-High	I _O = 0 mA, V _O > 5 V	-	3.1	7.5	mA	10, 16, 25
V _{FHL}	Threshold Input Voltage High-to-Low	I _O = 0 mA, V _O < 5 V	0.8	-	-	V	26
V _{UVLO+}	Under-Voltage Lockout Threshold	I _F = 10 mA, V _O > 5 V	11.5	13.0	14.5	V	18, 27
V _{UVLO-}		I _F = 10 mA, V _O < 5 V	10.0	11.5	13.0	V	18, 27
UVLO _{HYS}	Under–Voltage Lockout Threshold Hysteresis		-	1.5	-	V	

ELECTRICAL CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at V _{DD} = 30 V, V _{SS} = Ground,	
$T_A = 25^{\circ}C$ unless otherwise specified.)	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 7. In this test, V_{OH} is measured with a dc load current of 100 mA. When driving capacitive load V_{OH} will approach V_{DD} as I_{OH} approaches 0 A. 8. Maximum pulse width = 1 ms, maximum duty cycle = 20%.

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit	Figure
t _{PHL}	Propagation Delay Time to Logic LOW Output (Note 9)	I_F = 7 mA to 16 mA, Rg = 10 Ω, Cg =10 nF, f = 250 kHz,	50	145	210	ns	11, 12, 13, 14, 15, 28
t _{PLH}	Propagation Delay Time to Logic HIGH Output (Note 10)	Duty Cycle = 50%	50	135	210	ns	11, 12, 13, 14, 15, 28
PWD	Pulse Width Distortion (Note 11) t _{PHL} – t _{PLH}		-	25	65	ns	
PDD (Skew)	Propagation Delay Difference Between Any Two Parts (Note 12)		-90	-	90		
t _R	Output Rise Time (10% to 90%)		-	35	-	ns	28
t _F	Output Fall Time (90% to 10%)		-	25	-	ns	28
t _{ULVO} ON	ULVO Turn-On Delay	I _F = 10 mA, V _O > 5 V	-	1.7	_	μS	
t _{ULVO OFF}	ULVO Turn-Off Delay	I _F = 10 mA, V _O < 5 V	-	0.1	_	μS	
CM _H	Common Mode Transient Immunity at Output HIGH	$T_A = 25^{\circ}C$, $V_{DD} = 30$ V, $I_F = 10$ to 16 mA, $V_{CM} = 1500$ V (Note 13)	35	50	-	kV/μs	29
CM _L	Common Mode Transient Immunity at Output LOW	$T_A = 25^{\circ}C, V_{DD} = 30 V, V_F = 0 V, V_{CM} = 1500 V (Note 14)$	35	50	-	kV/μs	29


SWITCHING CHARACTERISTICS (Apply over all recommended conditions, typical value is measured at V_{DD} = 30 V, V_{SS} = Ground, $T_A = 25^{\circ}C$ unless otherwise specified.)

9. Propagation delay t_{PHL} is measured from the 50% level on the falling edge of the input pulse to the 50% level of the falling edge of the V_O signal.

Propagation delay t_{PLL} is measured from the 50% level on the failing edge of the input pulse to the 50% level of the failing edge of the V_O signal.
Propagation delay t_{PLH} is measured from the 50% level on the rising edge of the input pulse to the 50% level of the rising edge of the V_O signal.
PWD is defined as | t_{PHL} - t_{PLH} | for any given device.
The difference between t_{PHL} and t_{PLH} between any two FOD8384 parts under the same operating conditions, with equal loads.
Common mode transient immunity at output high is the maximum tolerable negative dVcm/dt on the trailing edge of the common pulse signal, V_{CM}, to ensure that the output remains high (i.e., V_O > 15.0 V).
Common mode transient immunity at output low is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal, V_{CM} to ensure the the output fow is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal, V_{CM} to ensure the the output fow is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal, V_{CM} to ensure the output fow is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal, V_{CM} to ensure the output fow is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal, V_{CM} to ensure the output fow is the maximum tolerable positive dVcm/dt on the leading edge of the common pulse signal, V_{CM} to ensure the output for the output for

 V_{CM} , to ensure that the output remains low (i.e., $V_O < 1.0$ V).

TYPICAL PERFORMANCE CHARACTERISTICS

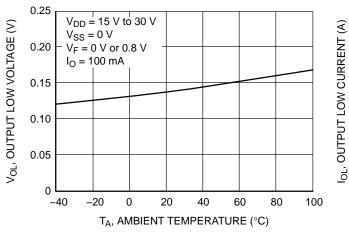


Figure 6. Output Low Voltage vs. Ambient Temperature

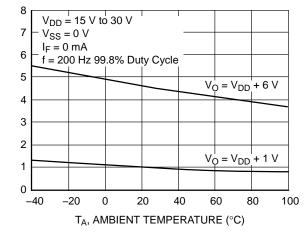
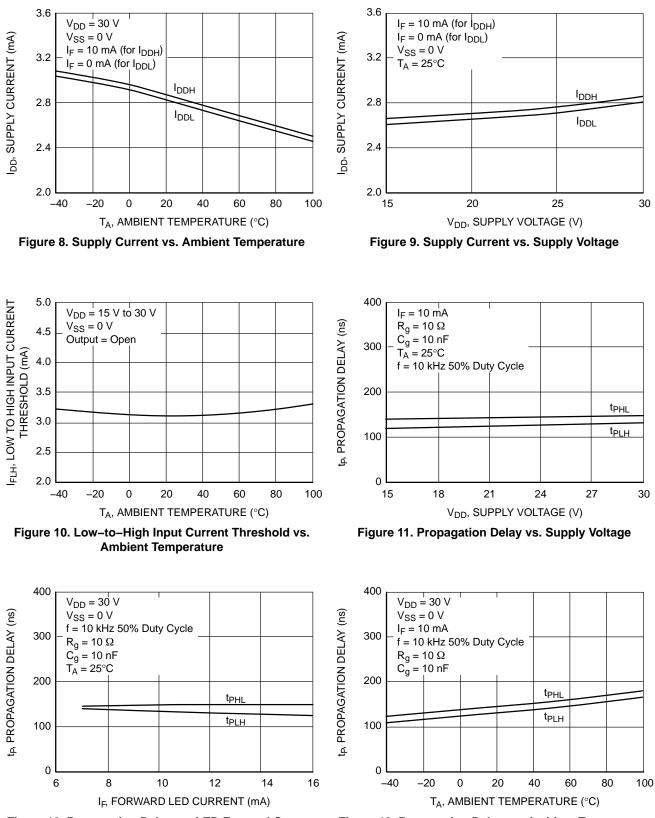
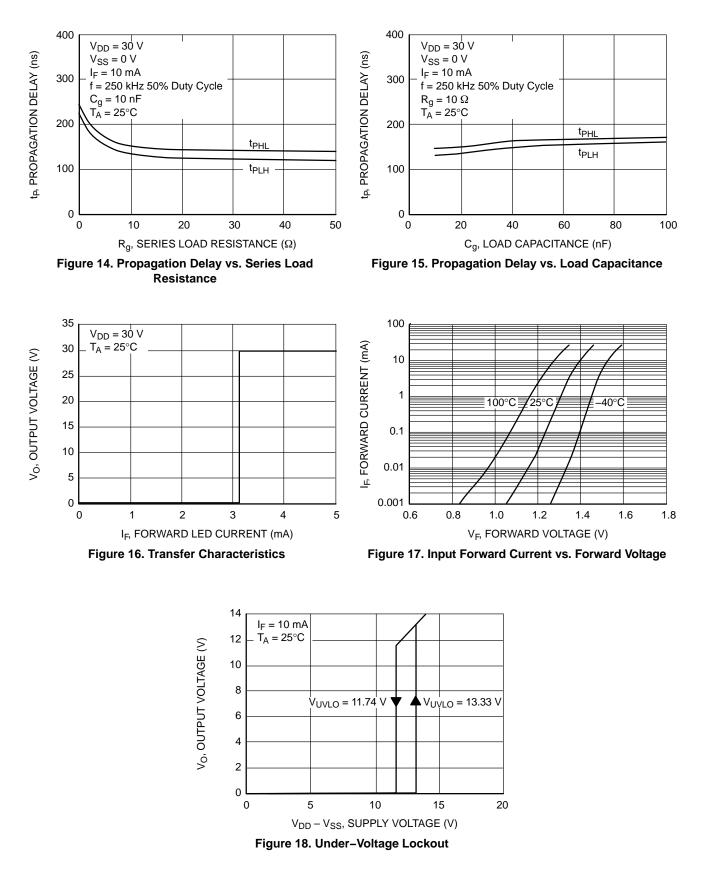
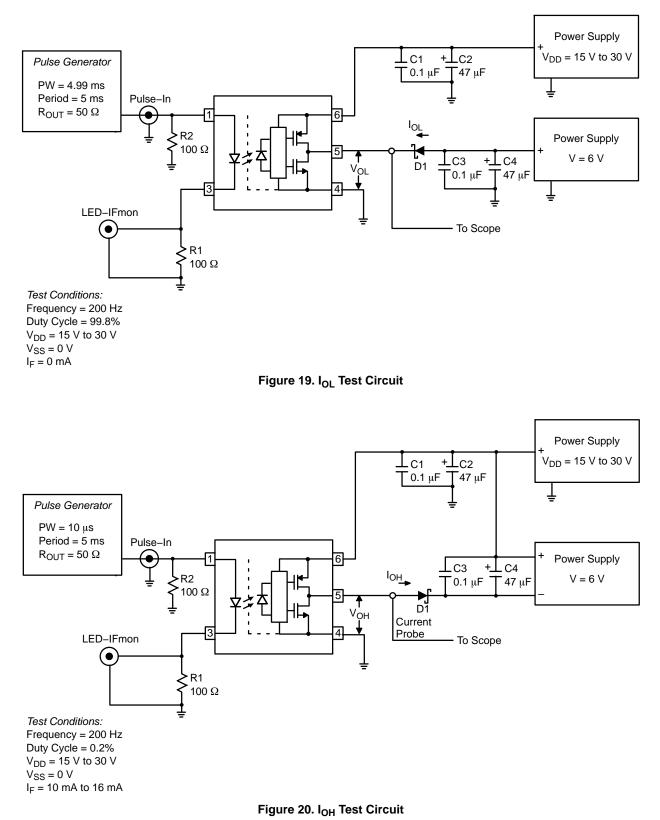


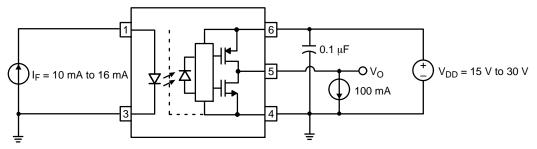
Figure 7. Output Low Current vs. Ambient Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

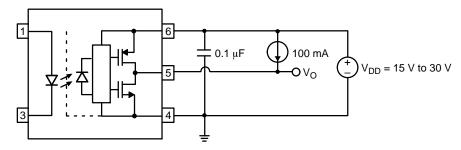



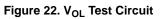

Figure 12. Propagation Delay vs. LED Forward Current

TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)



TEST CIRCUIT





TEST CIRCUIT (CONTINUED)

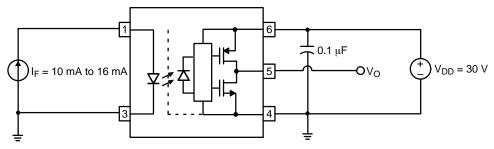


Figure 23. I_{DDH} Test Circuit

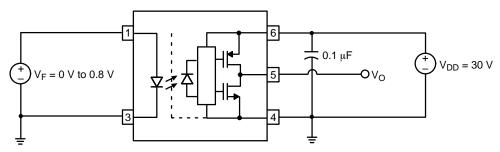


Figure 24. I_{DDL} Test Circuit

TEST CIRCUIT (CONTINUED)

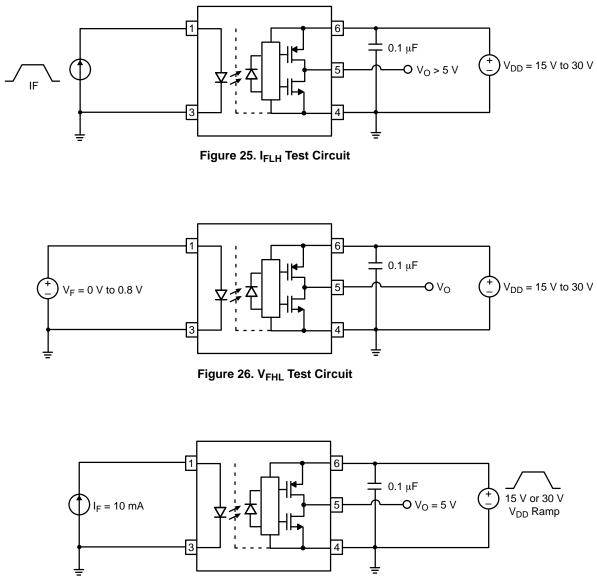


Figure 27. UVLO Test Circuit

TEST CIRCUIT (CONTINUED)

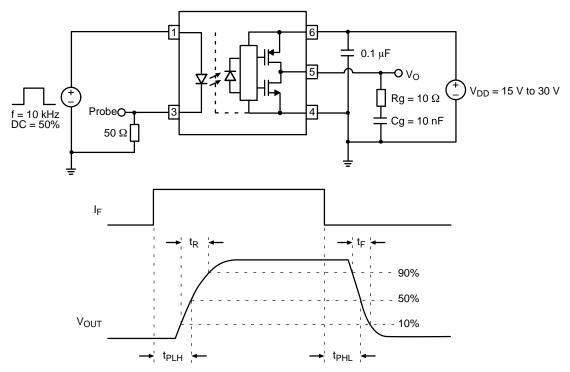
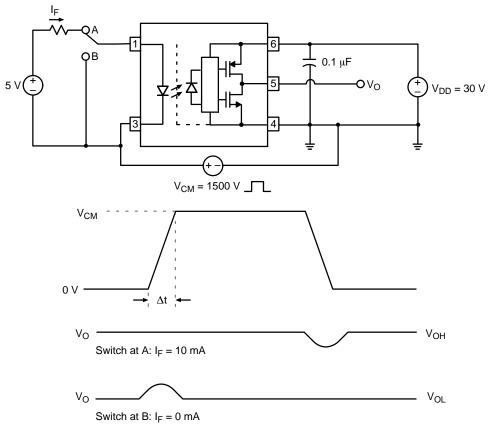
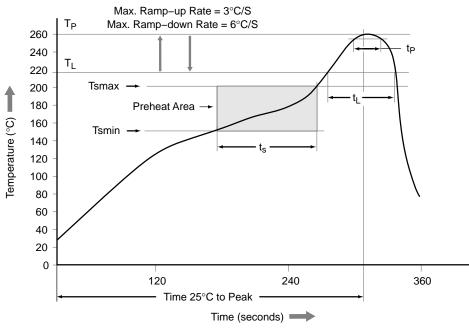




Figure 28. $t_{\text{PHL}}, t_{\text{PLH}}, t_{\text{R}}, \text{and } t_{\text{F}}$ Test Circuit and Waveforms

REFLOW PROFILE

Profile Freature	Pb–Free Assembly Profile
Temperature Minimum (T _{smin})	150°C
Temperature Maximum (T _{smax})	200°C
Time (t _S) from (T _{smin} to T _{smax})	60 s to 120 s
Ramp-up Rate (t _L to t _P)	3°C/second maximum
Liquidous Temperature (T _L)	217°C
Time (t _L) Maintained Above (T _L)	60 s to 150 s
Peak Body Package Temperature	260°C +0°C / –5°C
Time (t _P) within 55°C of 260°C	30 s
Ramp–Down Rate (T _P to T _L)	6°C/s maximum
Time 25°C to Peak Temperature	8 minutes maximum

ORDERING INFORMATION

Part Number	Part Number Package	
FOD8384	FOD8384 SOIC6 W LESS PIN 2, Wide Body SOP 5–Pin (Pb–Free)	
FOD8384R2	DD8384R2 SOIC6 W LESS PIN 2, Wide Body SOP 5–Pin (Pb–Free)	
FOD8384V	FOD8384V SOIC6 W LESS PIN 2, Wide Body SOP 5–Pin, DIN EN/IEC60747–5–5 Option (Pb–Free)	
FOD8384R2V	SOIC6 W LESS PIN 2, Wide Body SOP 5–Pin, DIN EN/ IEC60747–5–5 Option (Pb–Free)	1,000 Units / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
15. All packages are lead free per JEDEC: J–STD–020B standard.

OPTOPLANAR is registered trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

MECHANICAL CASE OUTLINE PACKAGE DIMENSIONS

SOIC5 (6) 3.65x8.80x2.55, 1.27P CASE 752AG X ISSUE B DATE 24 JUL 2023 NDTES: UNLESS DTHERWISE SPECIFIED e THIS PACKAGE DOES NOT CONFORM TO ANY A) D STANDARD. Α B) ALL DIMENSIONS ARE IN MILLIMETERS. C) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH AND TIE BAR PROTRUSIONS 6 4 ()D) DRAWING CONFORMS TO ASME Y14.5M-1994 E1/2 MILLIMETER DIM E1 А MIN. NOM. MAX. _ _ ___ 2.95 Α 0.30 0.20 Α1 0.10 2.45 2.55 Α2 2.65 0.41 0.51 0.31 b 0.33 C PIN DNE 0.19 0.22 0.25 e1 С INDICATOR ⊕ 0.25 M C A-B D D 3.55 3.65 3.75 В 5 TIPS 5X b Ε 11.20 11.30 11.40 E1 8.70 8.80 8.90 SEATING E1/2 4.20 BSC PLANE 1.27 BSC // 0.10 C е **⊢**0.60 e1 2.54 BSC л Α2 0.44 0.59 0.74 L 2 05 1.15 1.25 1.35 L1□ 0.10 C A1· 0.25 BSC 5X L2 С 1.27 0° 8° θ ___ 4.33 1 -2.54 (R0.54) 1 3 GAUGE PLANE LAND PATTERN RECOMMENDATION θ. *FOR ADDITIONAL INFORMATION ON OUR L2-PB-FREE STRATEGY AND SOLDERING Ċ (R1.29) DETAILS, PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND SEATING MOUNTING TECHNIQUES REFERENCE PLANE-DETAIL Α MANUAL, SOLDERRM/D. SCALE: 3,2:1

DOCUMENT NUMBER:	98AON13752G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SOIC5 (6) 3.65x8.80x2.55,	SOIC5 (6) 3.65x8.80x2.55, 1.27P PAG				

onsemi and OTISETTIL are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights of others.

© Semiconductor Components Industries, LLC, 2019

Onsemi

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales