SCLS453B - FEBRUARY 2001 - REVISED MAY 2003

18 8D

17 🛛 7D

16 7Q

14 🛛 6D

13 5D

12 5Q

11 || LE

15 6Q

- 4.5-V to 5.5-V V_{CC} Operation
- Wide Operating Temperature Range of -55°C to 125°C
- Balanced Propagation Delays and Transition Times
- Standard Outputs Drive Up To 10 LS-TTL Loads
- Significant Power Reduction Compared to LS-TTL Logic ICs
- Inputs Are TTL-Voltage Compatible

description/ordering information

The 'HCT373 devices are octal transparent D-type latches. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is low, the Q outputs are latched at the logic levels of the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

TA	PAC	KAGE [†]	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP – E	Tube	CD74HCT373E	CD74HCT373E
–55°C to 125°C	SOIC – M	Tube	CD74HCT373M	НСТ373М
-55 C 10 125 C	30IC - M	Tape and reel	CD74HCT373M96	
	CDIP – F	Tube	CD54HCT373F3A	CD54HCT373F3A

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2003, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.

	. E OR M PACKAGE P VIEW)
OE [1 1Q [2	20 V _{CC}

1D 🛙 3

2D 4

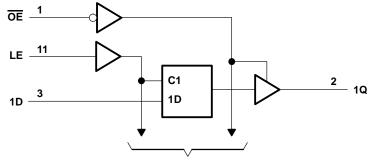
2Q 🛛 5

3Q 16

3D 🛛 7

4D 🛛 8

40 9


GND 10

CD54HCT373 ... F PACKAGE

SCLS453B - FEBRUARY 2001 - REVISED MAY 2003

	FUNCTION TABLE (each latch)											
INPUTS OUTPUT												
OE	LE	Q										
L	Н	Н	Н									
L	н	L	L									
L	L	Х	Q ₀ Z									
Н	Х	Х	Z									

logic diagram (positive logic)

To Seven Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}	–0.5 V to 7 V
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$) (see Note 1)	
Output clamp current, I_{OK} (V _O < 0 or V _O > V _{CC}) (see Note 1)	±20 mA
Continuous output drain current per output, $I_O (V_O = 0 \text{ to } V_{CC})$	±35 mA
Continuous output source or sink current per output, $I_O (V_O = 0 \text{ to } V_{CC})$	±25 mA
Continuous current through V _{CC} or GND	±50 mA
Package thermal impedance, θ_{JA} (see Note 2): E package	69°C/W
M package	58°C/W
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

SCLS453B - FEBRUARY 2001 - REVISED MAY 2003

recommended operating conditions (see Note 3)

		T _A = 25°C			T _A = −55°C TO 125°C		-40°C 5°C	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
VCC	Supply voltage	4.5	5.5	4.5	5.5	4.5	5.5	V
VIH	High-level input voltage	2		2		2		V
VIL	Low-level input voltage		0.8		0.8		0.8	V
٧I	Input voltage		VCC		VCC		VCC	V
Vo	Output voltage		VCC		VCC		VCC	V
$\Delta t/\Delta v$	Input transition rise or fall rate		500		500		500	ns

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS			T _A = 25°C		T _A = −55°C TO 125°C		T _A = −40°C TO 85°C		UNIT	
		Vcc	MIN	MAX	MIN	MAX	MIN	MAX			
Vou	VI = VIH or VIL	I _{OH} = -20 μA	4.5 V	4.4		4.4		4.4		V	
VOH	vI = vIH or vIL	I _{OH} = -6 mA	4.5 V	3.98		3.7		3.84		v	
Ve	$\lambda = \lambda = 0$	I _{OL} = 20 μA	4.5 V		0.1		0.1		0.1	V	
VOL	$V_{I} = V_{IH} \text{ or } V_{IL}$	$I_{OL} = 6 \text{ mA}$	4.5 V		0.26		0.4		0.33	v	
Ц	$V_{I} = V_{CC} \text{ or } 0$	VI = V _{CC} or 0			±0.1		±1		±1	μA	
I _{OZ}	$V_{O} = V_{CC} \text{ or } 0$		5.5 V		±0.5		±10		±5	μA	
Icc	$V_{I} = V_{CC} \text{ or } 0,$	I _O = 0	5.5 V		8		160		80	μA	
∆lCC‡	One input at V _{CC} – 2.1 V, Other inputs at 0 or V _{CC}		4.5 V to 5.5 V		360		490		450	μΑ	
Ci					10		10		10	pF	
Co					10		10		10	pF	

[‡]Additional quiescent supply current per input pin, TTL inputs high, 1 unit load. For dual-supply systems, theoretical worst-case (V_I = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

		-04	DING	IADL						
IN	PUT	U	UNIT LOAD							
(DE		1.5							
Ar	ıy D		0.4							
l	E		1							
Unit	load	is	∆lcc	limit						
spec	ified	in	elec	ctrical						
chara	acterist	tics	table	(e.a						

HCT INPUT LOADING TABLE

360 μA max at 25°C).

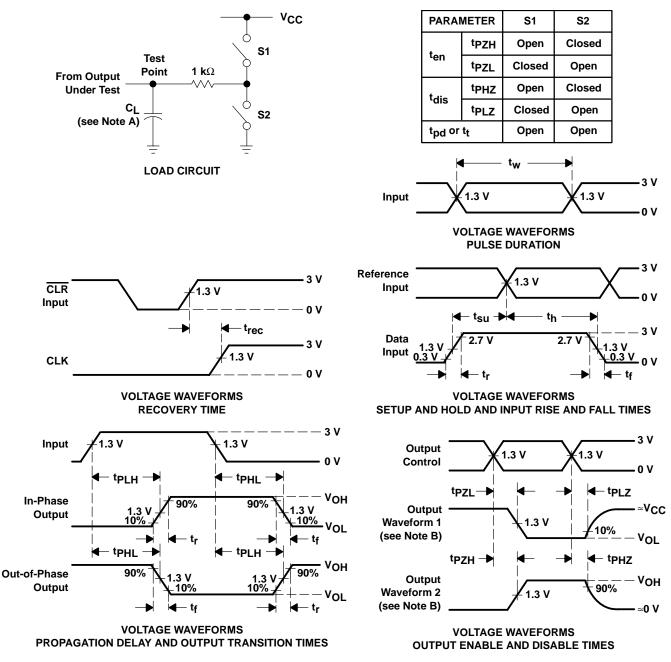
SCLS453B - FEBRUARY 2001 - REVISED MAY 2003

timing requirements over recommended operating free-air temperature range, V_{CC} = 4.5 V (unless otherwise noted) (see Figure 1)

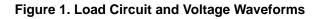
		T _A = 25°C		T _A = −55°C TO 125°C		T _A = −40°C TO 85°C		UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
tw	Pulse duration, LE high	16		24		20		ns
t _{su}	Setup time, data before LE \downarrow	13		20		16		ns
th	Hold time, data after LE \downarrow	10		15		13		ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 4.5 V (unless otherwise noted) (see Figure 1)

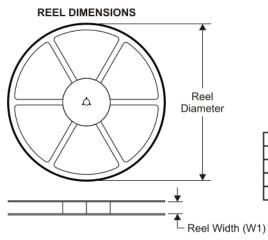
PARAMETER	FROM (INPUT)			T _A = 25°C	T _A = −55°C TO 125°C	T _A = −40°C TO 85°C	UNIT
		(001F01)	CAPACITANCE	MIN MAX	MIN MAX	MIN MAX	
.	D	Q	$C_{\rm L} = 50 \rm pE$	32	48	40	ns
^t pd	LE	ý	C _L = 50 pF	35	53	44	115
t _{en}	OE	Q	C _L = 50 pF	35	53	44	ns
^t dis	OE	Q	C _L = 50 pF	35	53	44	ns
tt		Q	C _L = 50 pF	12	18	15	ns

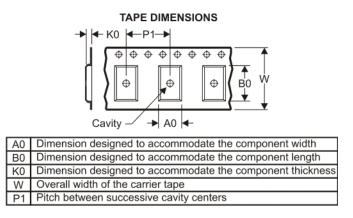

operating characteristics, V_{CC} = 5 V, T_A = 25°C

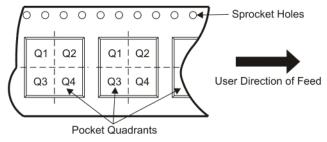
	PARAMETER				
Cpd	Power dissipation capacitance	53	pF		



SCLS453B - FEBRUARY 2001 - REVISED MAY 2003

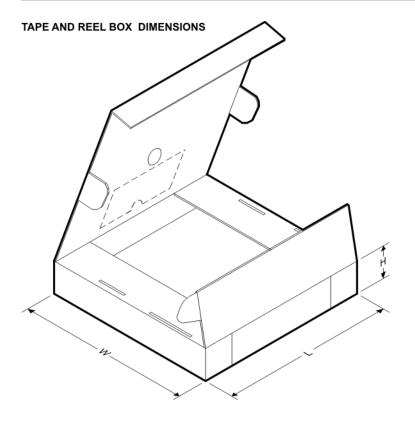

- NOTES: A. CL includes probe and test-fixture capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following
 - characteristics: PRR \leq 1 MHz, Z_O = 50 Ω , t_f = 6 ns, t_f = 6 ns.
 - D. For clock inputs, f_{max} is measured with the input duty cycle at 50%.
 - E. The outputs are measured one at a time with one input transition per measurement.
 - F. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - G. t_{PZL} and t_{PZH} are the same as t_{en} .
 - H. tpLH and tpHL are the same as t_{pd} .




TEXAS INSTRUMENTS www.ti.com

TAPE AND REEL INFORMATION

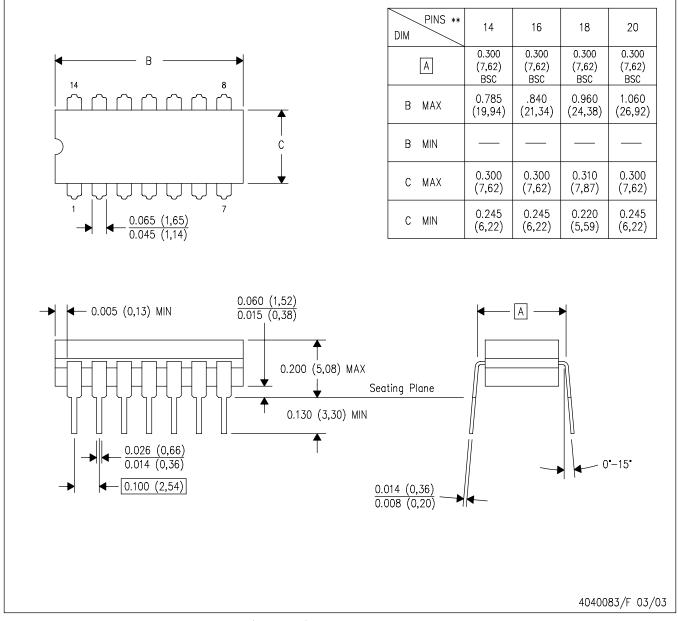
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal	
-----------------------------	--

Device		Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HCT373M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1

PACKAGE MATERIALS INFORMATION

11-Mar-2008

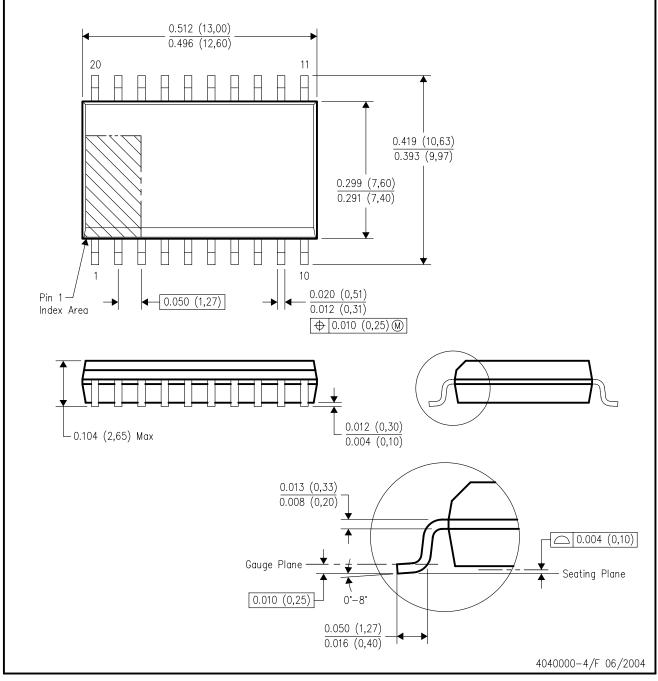


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HCT373M96	SOIC	DW	20	2000	346.0	346.0	41.0

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

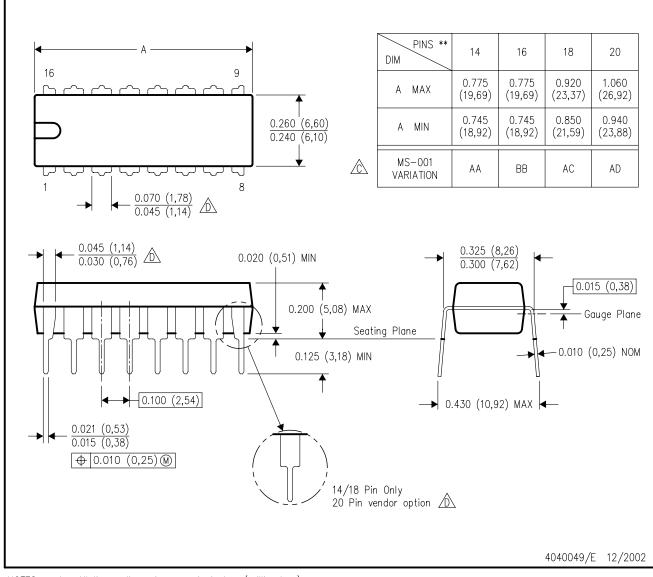
DW (R-PDSO-G20)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).


D. Falls within JEDEC MS-013 variation AC.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CD54HCT373F	ACTIVE	CDIP	J	20	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	CD54HCT373F	Samples
CD54HCT373F3A	ACTIVE	CDIP	J	20	1	TBD	Call TI	N / A for Pkg Type	-55 to 125	5962-8686701RA CD54HCT373F3A	Samples
CD74HCT373E	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	NIPDAU	N / A for Pkg Type	-55 to 125	CD74HCT373E	Samples
CD74HCT373M	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	НСТ373М	Samples
CD74HCT373M96	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	НСТ373М	Samples
CD74HCT373M96G4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	НСТ373М	Samples
CD74HCT373MG4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	NIPDAU	Level-1-260C-UNLIM	-55 to 125	НСТ373М	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

PACKAGE OPTION ADDENDUM

6-Feb-2020

(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

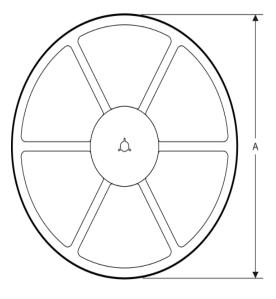
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

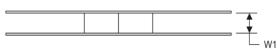
OTHER QUALIFIED VERSIONS OF CD54HCT373, CD74HCT373 :

- Catalog: CD74HCT373
- Military: CD54HCT373

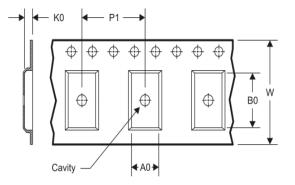
NOTE: Qualified Version Definitions:

- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION


REEL DIMENSIONS

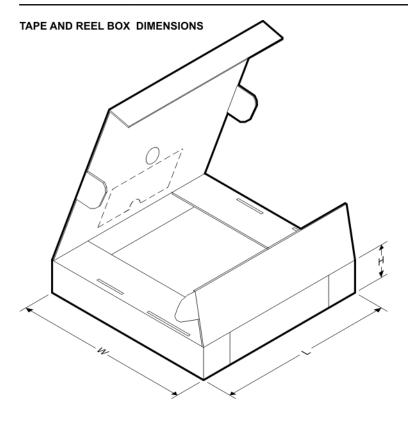
Texas Instruments

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

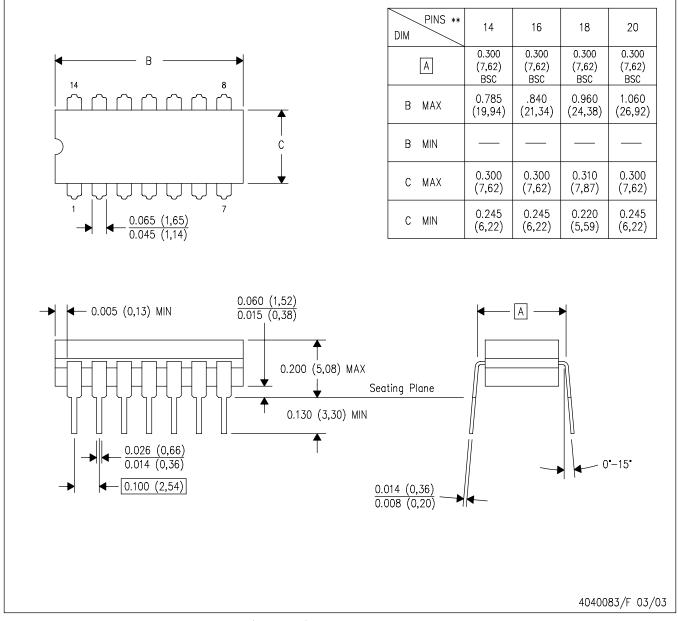

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	· · /	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD74HCT373M96	SOIC	DW	20	2000	330.0	24.4	10.8	13.0	2.7	12.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

14-Jul-2012

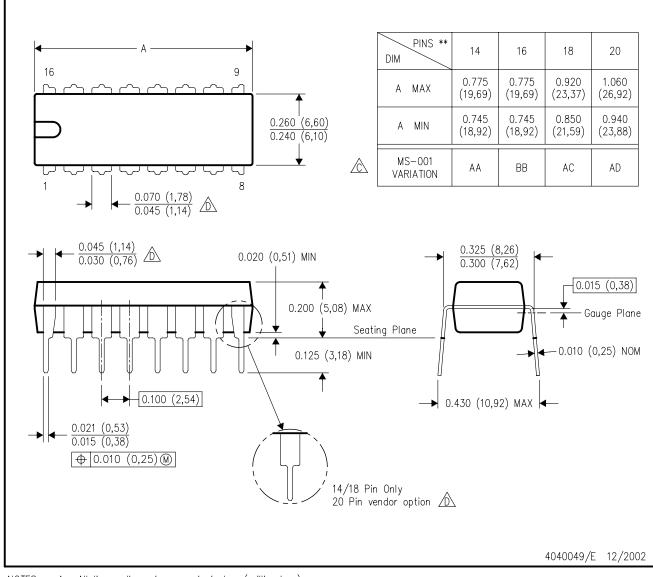


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HCT373M96	SOIC	DW	20	2000	367.0	367.0	45.0

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

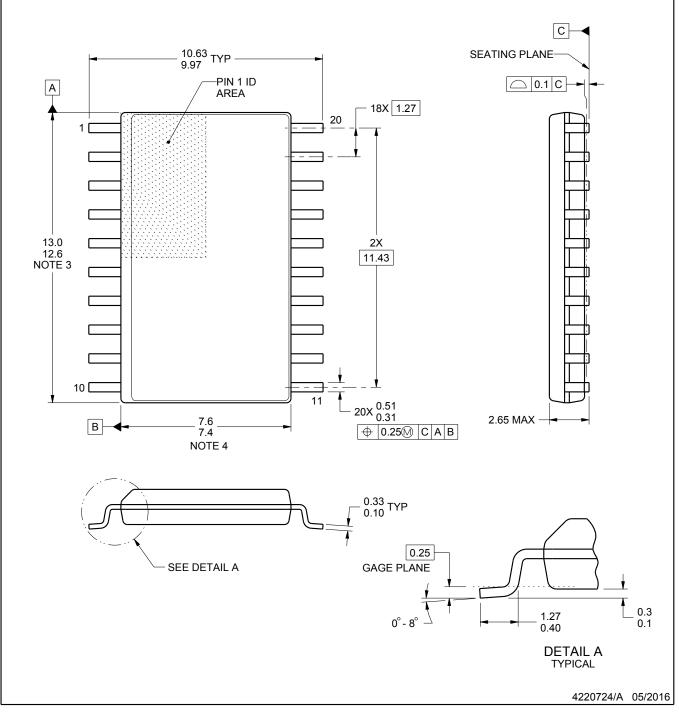
N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.


DW0020A

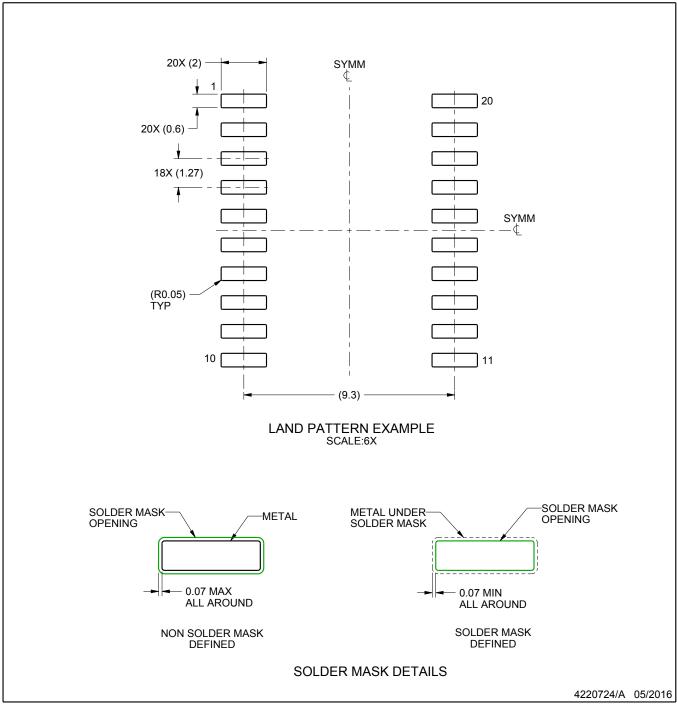
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.43 mm per side.
- 5. Reference JEDEC registration MS-013.



DW0020A

EXAMPLE BOARD LAYOUT

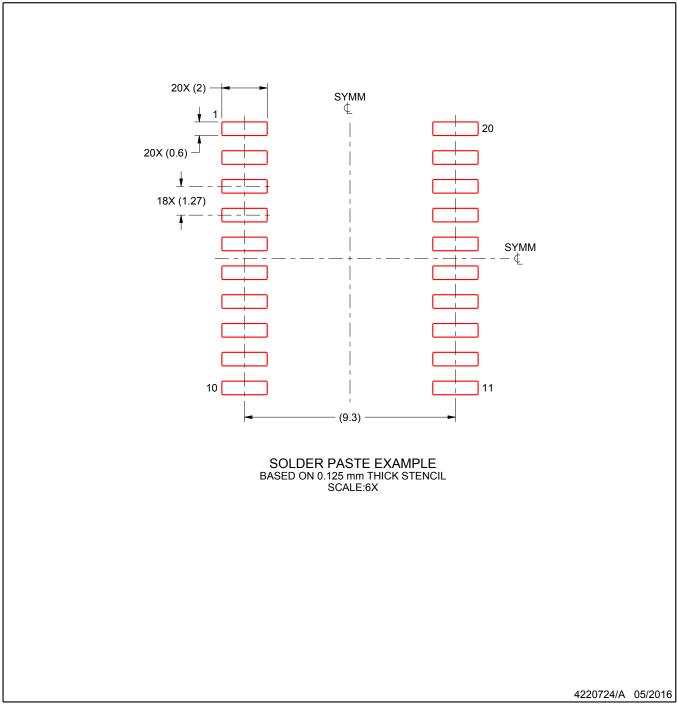
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0020A

EXAMPLE STENCIL DESIGN

SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated