

 Cherokey	4WD	Mobile	Platform	(SKU:ROB0102)	

Cherokey 4WD mobile platform

Contents

 1 Introduction
 2 Specification
 3 Mainboard Pin Outs

 3.1 Microcontroller Compatibility
 3.2 Power Supply

 4 Installation Steps
 5 Sample Code

 5.1 Simple Test Program
 5.2 First Test
 5.3 Control Test Program

 5.3.1 Changing the Motor Direction in Code Introduction
The Cherokey 4WD is a versatile mobile robot that is compatible with popular microcontrollers such
as the UNO, MEGA2560, Romeo, etc.

The Cherokey PCB is embedded with a L298P motor driver chip which allows it to drive two 6-12v
DC motors with a maximum of 2A current. The integrated 2 way DC motor driver and XBee &
APC220 socket allows you to start your project immediately without the need for an additional motor
driver or wireless shield.

The expansion plate significantly increases the surface area of the Cherokey allowing you to easily
connect a 9g micro servo or a standard sized servo in two different locations so that you can install a
robotic arm or ultrasonic/IR sensors. The prototyping area makes it convenient to install sensors on
the robot. Double sided solder pads in the middle of the top place can be populated with DIP or SMD
components to extend the robot's functions.

The high strength aluminium alloy chassis provides flexibilitiy in rapid movement particularly in
outdoor enviornments, such as grass, gravel, sand or sloped surfaces.

The Cherokey 4WD mobile platform is also suitable for robot competitions and research-related
projects.

 Specification
 2 channel DC motor driver
 Solder prototyping areas
 Servo sized holes
 Mounting holes compatible with Arduino UNO, MEGA, Romeo, etc.
 Incorporates a dual H-bridge for bi-directional motor control
 Easy to connect external modules such as XBee, DFRobot Bluetooth and APC220 wireless modules
 7 white LEDS surrounding the board's edge for cool lighting effects
 Gearboxed motors for extra torque
 Motor Specification:

 Gear Ratio 1:120
 No-load speed(3V):100RPM
 No-load speed(6V):200RPM
 No-load current(3V):60mA
 No-load current(6V):71mA
 Stall current(3V):260mA
 Stall current(6V):470mA
 Torque (3V): 1.2Kgcm
 Torque (6V): 1.92Kgcm
 Size: 55mm x 48.3mm x 23mm
 Weight: 45g

Mainboard	Pin	Outs

In the above diagram the 4 digital I/O pins in the lower-right corner can connect to any digital
pin of an Arduino or similar microcontroller. In order for it to work you must make sure the
correct pins are assigned in your code.

Note: D5 and D6 are PWM pins

More Details:

 PROG SWITCH:
 PROG:Set the switch in this position when uploading code if you plug in an XBee or Bluetooth

module on to the Cherokey PCB
 RUN: Set the switch in this position to run the code after it has been uploaded

 MOTOR SELECT1: Short the pins with a jumpers to control Motor 2 and Motor 4 simultaneously
 MOTOR SELECT2: Short the pins with a jumper to control Motor 1 and Motor 3 simultaneously

Note: If you want to control the motors independently, remove the jumpers from these pins

Correct and incorrect method of shorting the pins

 Microcontroller	Compatibility
The Cherokey is compatible with most microcontrollers,such as Arduino UNO, Diecimila, Leonardo,
Mega 1280,2560, ADK, Romeo etc.
If you use the RoMeo, you have complete control of 4 motors simultaneously.

Cherokey 4WD_DFRduino UNO

Cherokey 4WD_Romeo

Cherokey 4WD_Mega

NOTE:

1 If you use Romeo or a Leonardo board where "RX0"&"TX0" are not exposed, you

need to change "Serial" to "Serial1".

2 Turn the "PROG/RUN" switch to the "PROG" position when you are going to upl

oad the sketch.

3 Turn the switch to "RUN" position when you are going to use Xbee,APC220 or

other modules.

 Power	Supply
Install Battery on the back of the board.You can install 5xAA battery holder or lipo battery on the
back of the board.

 Installation	Steps
Refer to the Instruction manual for detailed assembly steps

 Sample	Code Simple	Test	Program	
Use Arduino IDE to upload the following sketch to the microcontroller via the USB port. In Arduino
IDE's board settings, you can use "Arduino UNO".
Under COM settings, select the microcontrollers COM port (the COM port will vary on your
computer).
(Make sure your COM port is correctly assigned to your microcontroller in the IDE or the program will
not upload!)

int speedPin_M1 = 5; //M1 Speed Control

int speedPin_M2 = 6; //M2 Speed Control

int directionPin_M1 = 4; //M1 Direction Control

int directionPin_M2 = 7; //M1 Direction Control

void setup(){

}

void loop(){

 carAdvance(100,100);

 delay(1000);

 carBack(100,100);

 delay(1000);

 carTurnLeft(250,250);

 delay(1000);

 carTurnRight(250,250);

 delay(1000);

}

void carStop(){ // Motor Stop

 digitalWrite(speedPin_M2,0);

 digitalWrite(directionPin_M1,LOW);

 digitalWrite(speedPin_M1,0);

 digitalWrite(directionPin_M2,LOW);

}

void carBack(int leftSpeed,int rightSpeed){ //Move backward

 analogWrite (speedPin_M2,leftSpeed); //PWM Speed Control

 digitalWrite(directionPin_M1,HIGH);

 analogWrite (speedPin_M1,rightSpeed);

 digitalWrite(directionPin_M2,HIGH);

}

void carAdvance(int leftSpeed,int rightSpeed){ //Move forward

 analogWrite (speedPin_M2,leftSpeed);

 digitalWrite(directionPin_M1,LOW);

 analogWrite (speedPin_M1,rightSpeed);

 digitalWrite(directionPin_M2,LOW);

}

void carTurnLeft(int leftSpeed,int rightSpeed){ //Turn Left

 analogWrite (speedPin_M2,leftSpeed);

 digitalWrite(directionPin_M1,LOW);

 analogWrite (speedPin_M1,rightSpeed);

 digitalWrite(directionPin_M2,HIGH);

}

void carTurnRight(int leftSpeed,int rightSpeed){ //Turn Right

 analogWrite (speedPin_M2,leftSpeed);

 digitalWrite(directionPin_M1,HIGH);

 analogWrite (speedPin_M1,rightSpeed);

 digitalWrite(directionPin_M2,LOW);

}

First	Test
After code has been uploaded to the microcontroller, unplug the USB cable from the board.
Place the Cherokey on a flat surface and at ground level for safety.
Turn the Cherokey on using the switch at the rear.

It should go backwards, forwards, turn 90 degrees to the left and turn 90 degrees to the right.

TROUBLESHOOTING TIPS:

Batteries must be connected to make the motors move! If the Cherokey is only plugged in with
USB power through the microcontroller, the motors will be under powered and will not work!
If batteries are installed but the motors are not moving, make sure the switch at the rear of the
Cherokey PCB is turned on
The Cherokey's direction may vary depending on the wiring of the motors. If you think the
directions are wrong, try switching the positive and negative wires
If a problem persists, try editing the code to change the motor direction - covered in the
Changing the Motor Direction in Code section below

Control	Test	Program

Now we can try another program that will give us keyboard control over the Cherokey.
The advantage of this program is that we will be given feedback to predefined directions. By
observing the robot's motion, you can debug the motor directions so that each motor is spinning the
correct way.
Upload the following code as before:

/*

 # Edited by: Matt

 # Date: 2015.09.06

 # Version: 1.1

 # Product: Cherokey 4WD Mobile Platform

 # SKU: ROB0102/ROB0117

 # Description:

 # Drive 2 motors with this Cherokey 4WD Mobile Platform

 # Connect D4,D5,D6,D7,GND to UNO digital 4,5,6,7,GND

*/

//Motor Definitions

int E1 = 5; //M1 Speed Control

int E2 = 6; //M2 Speed Control

int M1 = 4; //M1 Direction Control

int M2 = 7; //M2 Direction Control

//DIRECTIONS

//STOP

void stop(void)

{

 digitalWrite(E1, 0);

 digitalWrite(M1, LOW);

 digitalWrite(E2, 0);

 digitalWrite(M2, LOW);

}

//ADVANCE

void advance(char a, char b)

{

 analogWrite (E1, a);

 digitalWrite(M1, HIGH);

 analogWrite (E2, b);

 digitalWrite(M2, HIGH);

}

//MOVE BACKWARDS void back_off (char a, char b)

{

 analogWrite (E1, a);

 digitalWrite(M1, LOW);

 analogWrite (E2, b);

 digitalWrite(M2, LOW);

}

//TURN LEFT

void turn_L (char a, char b)

{

 analogWrite (E1, a);

 digitalWrite(M1, LOW);

 analogWrite (E2, b);

 digitalWrite(M2, HIGH);

}

//TURN RIGHT

void turn_R (char a, char b)

{

 analogWrite (E1, a);

 digitalWrite(M1, HIGH);

 analogWrite (E2, b);

 digitalWrite(M2, LOW);

}

void setup(void) {

 int i;

 for (i = 4; i <= 7; i++)

 pinMode(i, OUTPUT);

 Serial.begin(9600); //Set Baud Rate

 Serial.println("hello. w = forward, d = turn right, a = turn left, s = back

ward, x = stop, z = hello world"); //Display instructions in the serial monit

or

 digitalWrite(E1, LOW);

 digitalWrite(E2, LOW);

}

void loop(void) {

 if (Serial.available()) {

 char val = Serial.read();

 if (val != -1)

 {

 switch (val)

 {

 case 'w'://Move Forward

 Serial.println("going forward");

 advance (255, 255); //move forward at max speed

 delay (1000);

 stop();

 break;

 case 's'://Move Backward

 Serial.println("going backward");

 back_off (255, 255); //move backwards at max speed

 delay (1000);

 stop();

 break;

 case 'a'://Turn Left

 Serial.println("turning left");

 turn_L (255, 255);

 delay (1000);

 stop();

 break;

 case 'd'://Turn Right

 Serial.println("turning right");

 turn_R (255, 255);

 delay (1000);

 stop();

 break;

 case 'z':

 Serial.println("hello world!");

 break;

 case 'x':

 Serial.println("stopping");

 stop();

 break;

 }

 }

 else stop();

 }

}

Once the code has uploaded, keep the USB cable plugged in. Make sure the Cherokey's switch is
ON and that a power supply is connected - e.g.: a lipo battery.

Open the Arduno IDE serial monitor. Set the bottom panels to "No line ending" and the baud rate to
9600. This is important as the microcontroller needs to communicate with your computer for this
program to work properly.

If it is working correctly, the following line should appear when the serial monitor is opened:

hello. w = forward, d = turn right, a = turn left, s = backward, x = stop, z

= hello world

These are basic instructions for this program. Using the W, D, A, S, and Z keys on your keyboard,
try moving the Cherokey.

When you press "W", the Cherokey should move forward for 1 second, and then stop
When you press "D", the Cherokey should turn to the right 90 degrees and then stop
When you press "A", the Cherokey should turn to the left 90 degrees and then stop

When you press "S", the Cherokey should move backwards for 1 second, and then stop
When you press "Z", the Arduino IDE serial monitor should print: "hello world!"

If motors are spinning incorrectly, there are two methods to change this:

 Changing the polarity of the motors by changing the positive and negative wiring. (which works, but
isn't an elegant solution)

 Changing lines in the code, covered in the section below

Changing the Motor Direction in Code

Let's examine some of the global variables in the program:

int M1 = 4; //M1 Direction Control

int M2 = 7; //M2 Direction Control

Digital pins 4 and 7 have been assigned as the motor direction control pins. By setting each either
HIGH or LOW (i.e. on or off), we can control which way the motor will turn.

Let's examine another section of code:

//TURN LEFT

void turn_L (char a, char b)

{

 analogWrite (E1, a);

 digitalWrite(M1, LOW);

 analogWrite (E2, b);

 digitalWrite(M2, HIGH);

}

This is a function that tells the Cherokey to turn left. M1 and M2 are set as LOW and HIGH
respectively. This means that the left-side wheels will turn backwards and the right-side wheels turn
forwards.

Conversely, turning right has the motor pins set like so:

//TURN RIGHT

void turn_R (char a, char b)

{

 analogWrite (E1, a);

 digitalWrite(M1, HIGH);

 analogWrite (E2, b);

 digitalWrite(M2, LOW);

}

Therefore, if you find that your Cherokey's wheels are going in a direction you don't intend them to,
try changing the motor pins signal. If they are going the wrong way and the direction pin is set to
HIGH, try changing it to LOW, and vice versa. You can use the keyboard control program to debug
and verify these settings.

 Powered By DFRobot © 2008-2017

