

3.3V CMOS 12-BIT TO 24-BIT REGISTERED BUS EXCHANGER WITH 3-STATE OUTPUTS

IDT74ALVC162268

FEATURES:

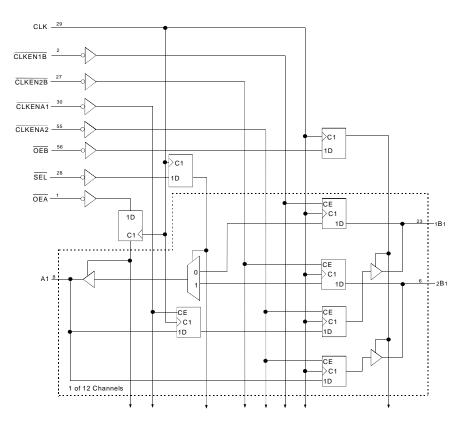
- 0.5 MICRON CMOS Technology
- Typical tSK(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- Vcc = 2.5V ± 0.2V
- CMOS power levels (0.4µ W typ. static)
- · Rail-to-Rail output swing for increased noise margin
- Available in SSOP, TSSOP, and TVSOP packages

DRIVE FEATURES:

- High Output Drivers: ±24mA (A port)
- Balanced Output Drivers: ±12mA (B port)

APPLICATIONS:

- 3.3V high speed systems
- 3.3V and lower voltage computing systems

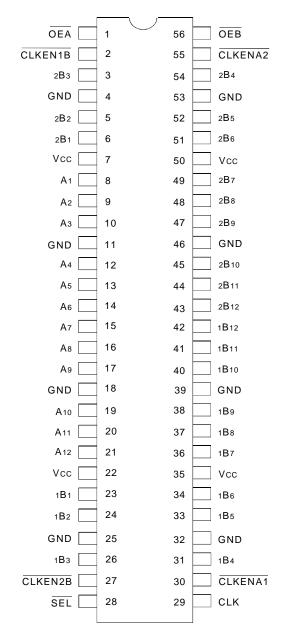

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION:

This registered bus exchanger is built using advanced dual metal CMOS technology. This device is used for applications in which data must be transferred from a narrow high-speed bus to a wide, lower-frequency bus.

The ALVC162268 device provides synchronous data exchange between the two ports. Data is stored in the internal registers on the low-tohigh transition of the clock (CLK) input when the appropriate clock-enable (CLKEN) inputs are low. The select (SEL) line is synchronous with CLK and selects 1B or 2B input data for the A outputs. For data transfer in the A-to-B direction, a two-stage pipeline is provided in the A-to-1B path, with a single storage register in the A-to-2B path. Proper control of these inputs allows two sequential 12-bit words to be presented synchronously as a 24bit word on the B-port. Data flow is controlled by the active-low output enables (\overline{OEA} and \overline{OEB}). These control terminals are registered to synchronize the bus-direction changes with CLK.

The ALVC162268 has series resistors in the device output structure of the "B" port which will significantly reduce line noise when used with light loads. This driver has been designed to drive ± 12 mA at the designated threshold levels. The "A" port has a ± 24 mA driver.



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

AUGUST 1999

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

INDUSTRIALTEMPERATURERANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
Ιουτ	DC Output Current	-50 to +50	mA
lıк	Continuous Clamp Current, VI < 0 or VI > Vcc	±50	mA
Іок	Continuous Clamp Current, Vo < 0	50	mA
ICC ISS	Continuous Current through each Vcc or GND	±100	mA

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	7	pF
COUT	Output Capacitance	Vout = 0V	7	9	pF
Соит	I/O Port Capacitance	VIN = 0V	7	9	рF

NOTE:

1. As applicable to the device type.

FUNCTION TABLES(1)

OUTPUTENABLE

	Inputs		Outp	outs
CLK	ŌĒĀ	OEB	Ах	1Bx, 2Bx
↑	Н	Н	Z	Z
↑	Н	L	Z	Active
↑ (L	Н	Active	Z
↑	L	L	Active	Active

A-TO-B STORAGE ($\overline{OEB} = L \text{ AND } \overline{OEA} = H$)

Inputs Outputs					outs
CLKENA1	CLKENA2	CLK	Ах	1Bx	2Bx
Н	Н	Х	Х	1B ₀ ⁽²⁾	2B ₀ ⁽²⁾
L	L	\uparrow	L	L ⁽³⁾	L
L	L	Ŷ	Н	H ⁽³⁾	Н
X	L	\uparrow	L	Х	L
Х	L	1	Н	Х	Н

FUNCTION TABLES (CONTINUED)(1)

B-TO-A STORAGE ($\overline{OEA} = L \text{ AND } \overline{OEA} = H$)

	Inputs					
CLKEN1B	CLKEN2B	CLK	SEL	1Bx	2Bx	Ax
н	Х	Х	Н	Х	Х	A ₀ ⁽²⁾
Х	Н	Х	L	Х	Х	A ₀ ⁽²⁾
L	Х	Ŷ	Н	L	Х	L
L	Х	\uparrow	Н	Н	Х	Н
Х	L	Ŷ	L	Х	L	L
Х	L	\uparrow	L	Х	Н	Н

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High Impedance $\uparrow = LOW-to-HIGH transition$

2. Output level before the indicated steady-state input conditions were established.

3. Two CLK edges are needed to propagate data.

Pin Names	I/O	Description
Ax (1:12)	I/O	Bidirectional Data Port A. Usually connected to the CPU's address/data bus.
1Bx (1:12)	I/O	Bidirectional Data Port 1B. Usually connected to the even path or even bank of memory.
2Bx (1:12)	I/O	Bidirectional Data Port 2B. Usually connected to the odd path or odd bank of memory.
CLK	I	Clock Input
CLKENA1	-	Clock Enable Input for the A-1B Register. If CLKENA1 is LOW during the rising edge of CLK, data will be clocked into register A-1B (Active LOW).
CLKENA2	Ι	Clock Enable Input for the A-1B Register. If CLKENA2 is LOW during the rising edge of CLK, data will be clocked into register A-2B (Active LOW).
CLKEN1B	I	Clock Enable Input for the A-1B Register. If CLKEN1B is LOW during the rising edge of CLK, data will be clocked into register 1B-A (Active LOW).
CLKEN2B	Ι	Clock Enable Input for the A-1B Register. If CLKEN2B is LOW during the rising edge of CLK, data will be clocked into register 2B-A (Active LOW).
SEL		1B or 2B Port Selection. When HIGH during the rising edge of CLK, SEL enables data transfer from 1B Port to A Port. When LOW during the rising edge of CLK, SEL enables data transfer from 2B Port to A Port (Active LOW).
ŌĒĀ	I	Synchronous Output Enable for A Port (Active LOW)
ŌĒB		Synchronous Output Enable for A Port (Active LOW)

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Co	nditions	Min.	Typ. ⁽¹⁾	Max.	Unit
VIH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	—		V
		Vcc = 2.7V to 3.6V		2	—	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	-	0.7	V
		Vcc = 2.7V to 3.6V		—	—	0.8	
Ін	Input HIGH Current	Vcc = 3.6V	VI = VCC	—	-	±5	μA
١L	Input LOW Current	Vcc = 3.6V	VI = GND	_	-	±5	μA
Іогн	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc	—	—	±10	μA
lozl	(3-State Output pins)		Vo = GND	_	_	±10	
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
νн	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ІССL ІССН ІССZ	Quiescent Power Supply Current	Vcc = 3.6V VIN = GND or Vcc		-	0.1	40	μA
Δ ICC	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other	inputs at Vcc or GND	-	—	750	μA

NOTE:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS (A PORT)

Symbol	Parameter	Test C	conditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	IOH = - 6mA	2	_	
		Vcc = 2.3V	Іон = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3V		2.4	_	
		Vcc = 3V	Iон = - 24mA	2	—	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	—	0.2	V
		Vcc = 2.3V	IOL = 6mA	—	0.4	
			IOL = 12mA	—	0.7	
		Vcc = 2.7V	IOL = 12mA	—	0.4	
		Vcc = 3V	IOL = 24mA	_	0.55	

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C.

OUTPUT DRIVE CHARACTERISTICS (B PORT)

Symbol	Parameter	Test C	Conditions ⁽¹⁾	Min.	Max.	Unit	
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Iон = - 0.1mA	Vcc-0.2	_	V	
		Vcc = 2.3V	IOH = - 4mA	1.9	_		
			IOH = - 6mA	1.7	_		
		Vcc = 2.7V	IOH = - 4mA	2.2	_		
			IOH = - 8mA	2	_		
		Vcc = 3V	IOH = - 6mA	2.4	_		
			Іон = - 12mA	2	—		
Vol		VoL Output LOW Voltage Vcc = 2.3V to 3.6V	Vcc = 2.3V to 3.6V	IOL = 0.1mA	—	0.2	V
		Vcc = 2.3V	IOL = 4mA	—	0.4		
			IOL = 6mA	—	0.55		
		Vcc = 2.7V	IOL = 4mA	—	0.4		
			IOL = 8mA	_	0.6	1	
		Vcc = 3V	IOL = 6mA	—	0.55		
			IOL = 12mA	_	0.8		
				1			

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C.

OPERATING CHARACTERISTICS, T_A = 25^{\circ}C

			Vcc = 2.5V ± 0.2V	Vcc = 3.3V ± 0.3V	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
CPD	Power Dissipation Capacitance Outputs enabled	CL = 0pF, f = 10Mhz	87	120	pF
CPD	Power Dissipation Capacitance Outputs disabled		80	118	

IDT74ALVC162268
3.3V CMOS 12-BIT TO 24-BIT REGISTERED BUS EXCHANGER

SWITCHING CHARACTERISTICS (A PORT)(1)

		Vcc = 2.	Vcc = 2.5V ± 0.2V		Vcc = 2.7V		Vcc = 3.3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
f MAX		120	_	125	-	150	_	MHz
tPLH	Propagation Delay	1.6	5.8	_	5.4	1.7	4.8	ns
t PHL	CLK to Ax (1B)							
tPLH	Propagation Delay	1.6	5.8	—	5.3	1.8	4.8	ns
t PHL	CLK to Ax (2B)							
tPLH	Propagation Delay	2.5	7.3	_	6.5	2.4	5.8	ns
t PHL	CLK to Ax (SEL)							
tPZH	Output Enable Time	2	6.2	_	5.6	1.8	5.1	ns
tPZL	CLK to Ax							
tPHZ	Output Disable Time	2	6.5	_	5.4	2.1	5	ns
tPLZ	CLK to Ax							
tsu	Set-up Time, Ax data before $CLK\uparrow$	4.5	_	4	_	3.4	-	ns
tsu	Set-up Time, SEL before CLK↑	1.4	_	1.6	_	1.3	-	ns
tsu	Set-up Time, CLKENA1 or CLKENA2 before CLK1	3.6	_	3.4	-	2.8	-	ns
tsu	Set-up Time, OEA before CLK↑	4.2	_	3.9	_	3.2	-	ns
tΗ	Hold Time, Ax data after CLK \uparrow	0	—	0	_	0.2	-	ns
ťH	Hold Time, SEL after CLK↑	1	_	1	_	1	—	ns
ťH	Hold Time, CLKENA1 or CLKENA2 after CLK1	0.1	—	0.1	_	0.4	—	ns
tΗ	Hold Time, \overline{OEA} after CLK \uparrow	0	—	0	_	0.2	_	ns
tw	Pulse Width, CLK HIGH or LOW	3.3	_	3.3	_	3.3	—	ns
tSK(O)	Output Skew ⁽²⁾	_	_	_	-	_	500	ps

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to $+85^{\circ}$ C.

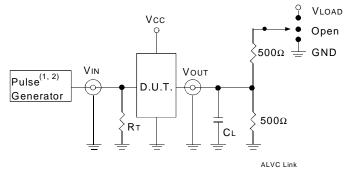
2. Skew between any two outputs of the same package and switching in the same direction.

SWITCHING CHARACTERISTICS (B PORT)⁽¹⁾

			Vcc = 2.5V ± 0.2V		Vcc = 2.7V		Vcc = 3.3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
fMAX		120	_	125	_	150	_	MHz
tPLH .	Propagation Delay	1.6	6.1	_	5.9	1.8	5.4	ns
t PHL	CLK to 1Bx, 2Bx							
tPZH	Output Enable Time	2.7	7.2	_	6.8	2.6	6.1	ns
tPZL	CLK to 1Bx, 2Bx							
tPHZ	Output Disable Time	2.8	7.2	_	6.1	2.5	5.9	ns
tPLZ	CLK to 1Bx, 2Bx							
tsu	Set-up Time, Bx data before CLK^\uparrow	0.8	_	1.2	_	1	—	ns
tsu	Set-up Time, CLKEN1B or CLKEN2B before CLK [↑]	3.2	_	3	_	2.5	—	ns
tsu	Set-up Time, OEB before CLK↑	4.2	_	3.9	_	3.2	_	ns
tΗ	Hold Time, Bx data after CLK \uparrow	1.3	_	1.2	_	1.3	_	ns
tΗ	Hold Time, CLKEN1B or CLKEN2B after CLK [↑]	0.1	_	0	_	0.5	—	ns
tΗ	Hold Time, OEB after CLK↑	0	_	0	_	0.2	—	ns
tsk(0)	Output Skew ⁽²⁾		_	—	—	_	500	ps

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to $+85^{\circ}$ C.


2. Skew between any two outputs of the same package and switching in the same direction.

IDT74ALVC162268 3.3V CMOS 12-BIT TO 24-BIT REGISTERED BUS EXCHANGER

INDUSTRIAL TEMPERATURE RANGE

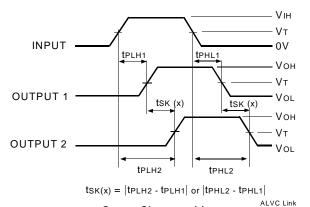
TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
Vін	2.7	2.7	Vcc	۷
Vт	1.5	1.5	Vcc / 2	۷
Vlz	300	300	150	mV
Vнz	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

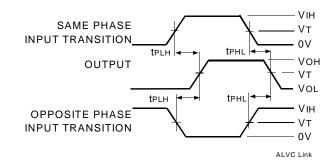

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

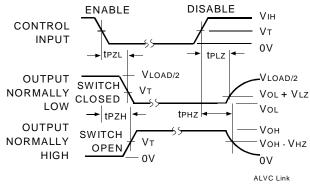
NOTES:

1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns. 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	VLOAD
Disable High Enable High	GND
All Other Tests	Open




NOTES:

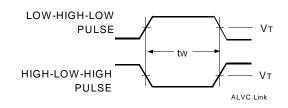
For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs. 1.

For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank. 2.

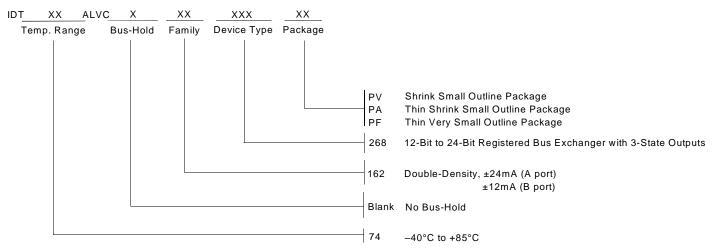


Enable and Disable Times

NOTE:


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Set-up, Hold, and Release Times



Pulse Width

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com for Tech Support: logichelp@idt.com (408) 654-6459