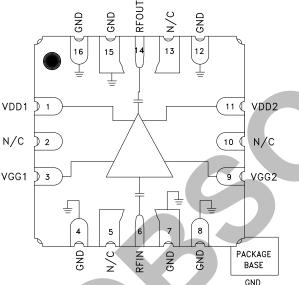
ANALOG DEVICES

v00.0613

HMC5929LS6

GaAs pHEMT MMIC 1 WATT POWER AMPLIFIER, 40 - 43.5 GHz

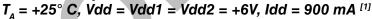
Typical Applications


The HMC5929LS6 is ideal for:

- Point-to-Point Radios
- Point-to-Multi-Point Radios
- VSAT & SATCOM
- Military & Space

Features

Saturated Output Power: +30 dBm @ 15% PAE Output IP3: +36 dBm High Gain: 19 dB DC Supply: +6V @ 900 mA No External Matching Required 16 Lead Ceramic 6x6 mm SMT Package: 36 mm²


Functional Diagram

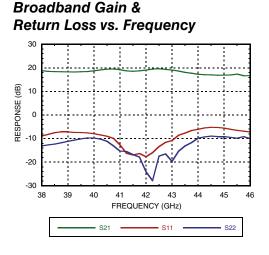
General Description

The HMC5929LS6 is a 4 stage GaAs pHEMT MMIC 1 Watt Power Amplifier which operates between 40 and 43.5 GHz. The amplifier provides 19 dB of gain, +30 dBm of saturated output power, and 15% PAE from a +6V supply. With an excellent IP3 of +36 dBm, the HMC5929LS6 is ideal for high linearity applications in military and space as well as point-to-point and pointto-multi-point radios. The HMC5929LS6 is housed in a ceramic air cavity package which exhibits low thermal resistance and is compatible with surface mount manufacturing techniques. The RF I/Os are internally matched and DC blocked for ease of integration into higher level assemblies.

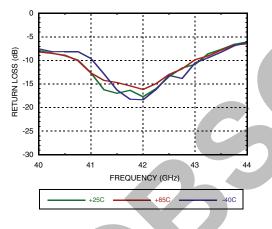
Electrical Specifications

Parameter	Min.	Тур.	Max.	Units
Frequency Range		40 - 43.5 GH		GHz
Gain	16	19		dB
Gain Variation Over Temperature		0.04		dB/ °C
Input Return Loss		9		dB
Output Return Loss		12		dB
Output Power for 1 dB Compression (P1dB)	24.5	27		dBm
Saturated Output Power (Psat)		30		dBm
Output Third Order Intercept (IP3) ^[2]		36		dBm
Total Supply Current (Idd)		900		mA

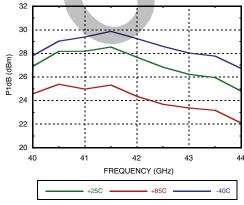
[1] Adjust Vgg between -2 to 0V to achieve Idd = 900 mA typical.

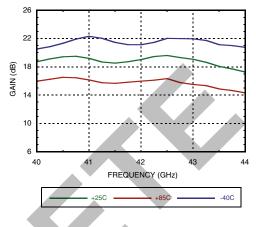

[2] Measurement taken at +6V @ 900 mA, Pout / Tone = +18 dBm

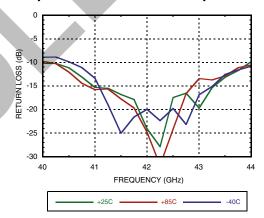
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

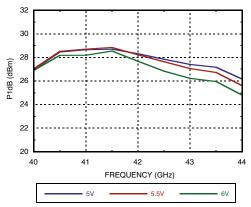


v00.0613

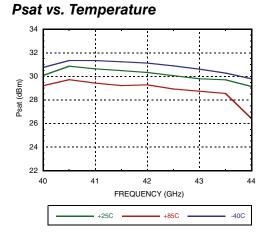

GaAs pHEMT MMIC 1 WATT POWER AMPLIFIER, 40 - 43.5 GHz


Input Return Loss vs. Temperature

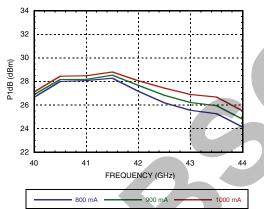



Gain vs. Temperature

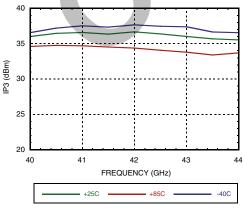
Output Return Loss vs. Temperature

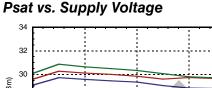


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

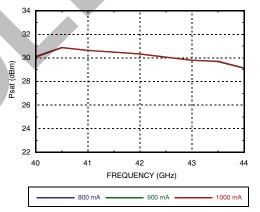


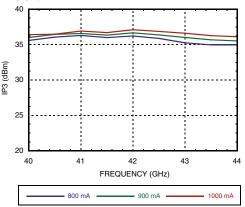
v00.0613


GaAs pHEMT MMIC 1 WATT POWER AMPLIFIER, 40 - 43.5 GHz



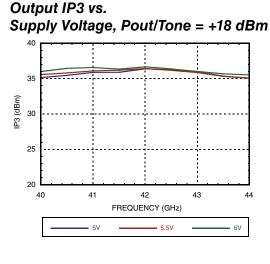

P1dB vs. Supply Current (Idd)


Output IP3 vs. Temperature, Pout/Tone = +18 dBm

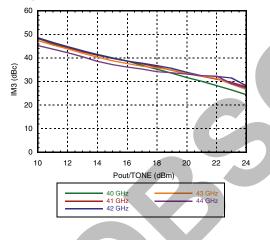


Psat vs. Supply Current (Idd)

Output IP3 vs. Supply Current, Pout/Tone = +18 dBm

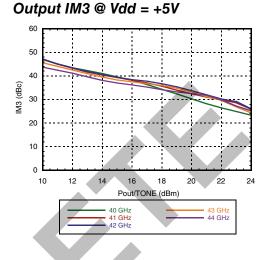


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

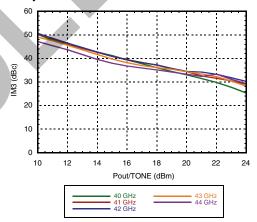


v00.0613

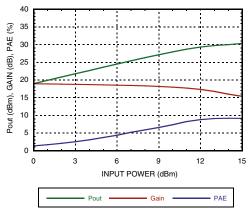

GaAs pHEMT MMIC 1 WATT POWER AMPLIFIER, 40 - 43.5 GHz



Output IM3 @ Vdd = +5.5V

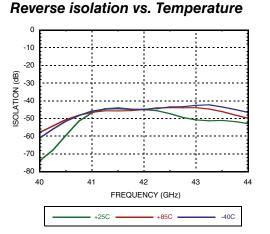


Power Compression @ 41 GHz

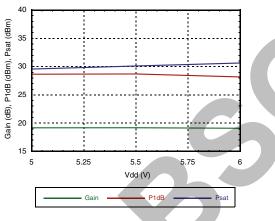


Output IM3 @ Vdd = +6V

Power Compression @ 42 GHz

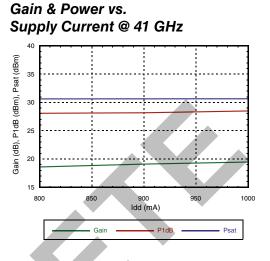


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

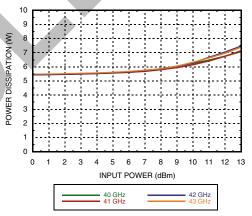


v00.0613

GaAs pHEMT MMIC 1 WATT POWER AMPLIFIER, 40 - 43.5 GHz



Gain & Power vs. Supply Voltage @ 41 GHz



Absolute Maximum Ratings

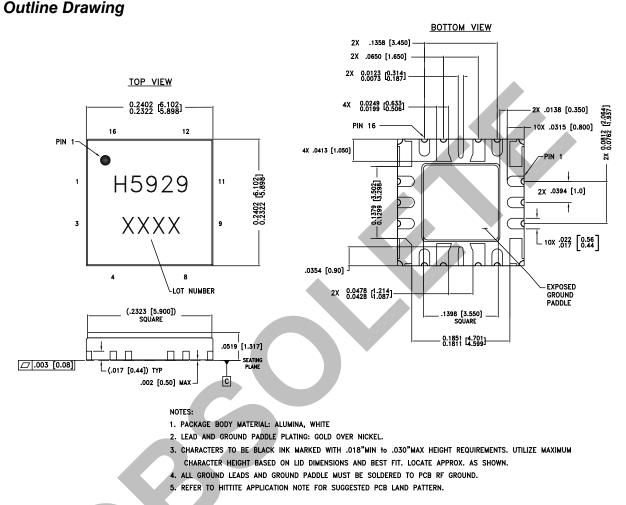
+7V	
+20 dBm	
150 °C	
6.2 W	
10.5 °C/W	
-65 to +150 °C	
-40 to +85 °C	
Class 1A	

Power Dissipation

Typical Supply Current vs. Vdd

Vdd (V)	ldd (mA)
+5.0	900
+5.5	900
+6.0	900

Note: Amplifier will operate over full voltage ranges shown above. Vgg adjusted to achieve Idd = 900 mA



AMPLIFIERS - LINEAR & POWER - SMT

AMPLIFIERS - LINE

v00.0613

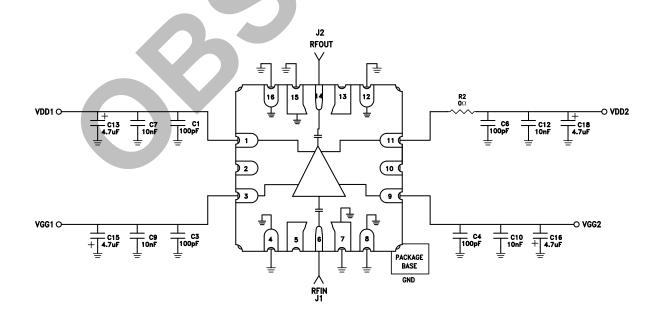
GaAs pHEMT MMIC 1 WATT POWER AMPLIFIER, 40 - 43.5 GHz

Table 1. Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[1]
HMC5929LS6	ALUMINA, WHITE	Gold over Nickel	N/A	H5929 XXXX

[1] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

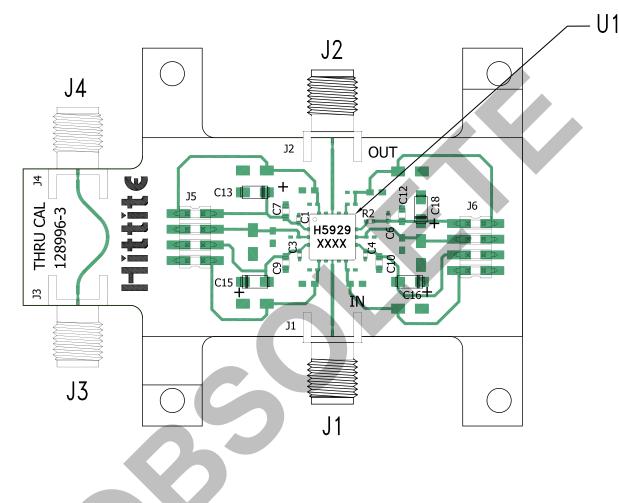

v00.0613

GaAs pHEMT MMIC 1 WATT POWER AMPLIFIER, 40 - 43.5 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 11	Vdd1, Vdd2	Drain bias voltage. External bypass capacitors of 100 pF, 10 nF and 4.7 μF are required for each pin.	⊖Vdd1,2
2, 5, 10, 13	N/C	These pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
3, 9	Vgg1, Vgg2	Gate control for PA. Adjust Vgg to achieve recommended bias current. External bypass caps 100 pF, 10 nF and 4.7 μF are required. Apply Vgg bias to either pin 3 or pin 9.	Vgg1,2
4, 7, 8, 12, 15, 16	GND	These pins and the exposed ground paddle must be connected to RF/DC ground.	
6	RFIN	This pin is AC coupled and matched to 50 Ohms.	
14	RFOUT	This pin is AC coupled and matched to 50 Ohms.	

Application Circuit


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v00.0613

GaAs pHEMT MMIC 1 WATT POWER AMPLIFIER, 40 - 43.5 GHz

Evaluation PCB

List of Materials for Evaluation PCB EVAL01-HMC5929LS6 [1]

Item	Description	
J1 - J4	"K" Connector, SRI	
J5, J6	DC Pin	
C1, C3, C4, C6 100 pF Capacitor, 0402 Pkg.		
C7, C9, C10, C12	10000 pF Capacitor, 0603 Pkg.	
C13, C15, C16, C18	6, C18 4.7 uF Capacitor, Case A Pkg.	
R2	0 Ohm Resistor, 0402 Pkg.	
U1	HMC5929LS6 Amplifier	
PCB [2]	128996 Eval Board	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.