ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Intelligent Power Module (IPM) 600 V, 10 A

ON Semiconductor®

www.onsemi.com

Overview

This Inverter IPM includes the output stage of a 3-phase inverter, pre-drive circuits, bootstrap circuits, and protection circuits in one package.

Function

- SIP (single in-line package) of the transfer full mold structure.
- The emitter line of the each lower phase outputs to an external terminal with the option of control using 3-phase current detection with external resistors.
- Direct input of CMOS level control signals without an insulating circuit is possible.
- Protective circuits including over current and pre-drive low voltage protection are built in.
- A single power supply drive is enabled through the use of bootstrap circuits for upper IGBT gate drives.
- Built-in dead-time for shoot-thru protection.
- Internal substrate temperature is measured with an internal pulled up thermistor.

Certification

• UL1557 (File Number : E339285)

Specifications

Absolute Maximum Ratings at Tc = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VCC	V+ to VRU(VRV,VRW), surge < 500 V *1	450	V
Collector-emitter voltage	VCE	V+ to U(V,W) or U(V,W) to VRU(VRV,VRW)	600	V
Output ourrant	lo.	V+, VRU,VRV,VRW, U,V,W terminal current	±10	Α
Output current	lo	V+, VRU,VRV,VRW, U,V,W terminal current at Tc = 100°C	±6	Α
Output peak current	lop	V+, VRU, VRV, VRW, U, V, W terminal current for a pulse width of 1 ms	±20	Α
Pre-driver voltage	VD1,2,3,4	VB1 to U, VB2 to V, VB3 to W, V _{DD} to V _{SS} *2	20	V
Input signal voltage	VIN	HIN1, 2, 3, LIN1, 2, 3 terminals	-0.3 to 7	V
ITRIP terminal voltage	VITRIP	ITRIP terminal	V _{SS} +5	V
Maximum power dissipation	Pd	IGBT per 1 channel	22	W
Junction temperature	Tj	IGBT,FRD	150	°C
Storage temperature	Tstg		-40 to +125	°C
Operating case temperature	Tc	IPM case temperature	-40 to +100	°C
Tightening torque		Case mounting screws *3	0.9	Nm
Withstand voltage	Vis	50 Hz sine wave AC 1 minute *4	2000	VRMS

Reference voltage is "VSS" terminal voltage unless otherwise specified.

- *1 : Surge voltage developed by the switching operation due to the wiring inductance between V+ and VRU(VRV,VRW) terminals.
- *2 : VD1 = VB1 to U, VD2 = VB2 to V, VD3 = VB3 to W, VD4 = V_{DD} to V_{SS} terminal voltage.
- *3 : Flatness of the heat-sink should be less than –50 μm to +100 μm .
- *4: Test conditions: AC 2500 V, 1 second.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ORDERING INFORMATION

See detailed ordering and shipping information on page 15 of this data sheet.

Electrical Characteristics at Tc = 25°C, VD1, VD2, VD3, VD4 = 15 V

Development	Conditions		Test		11		
Parameter Symbol Conditions		circuit	min	typ	max	Unit	
Power output section							
Collector-emitter cut-off current	ICE	V _{CE} = 600 V	Fi 4	-	-	0.1	mA
Bootstrap diode reverse current	IR(BD)	VR(BD) = 600 V	Fig.1	-	-	0.1	mA
Collector to emitter saturation	\/ (CAT)	Io = 10 A, Tj = 25°C	Fin 0	-	1.4	2.3	.,
voltage	V _{CE} (SAT)	Io = 5 A, Tj = 100°C	Fig.2	-	1.3	-	V
Diede fangerd valle se	\/⊏	Io = 10 A, Tj = 25°C	Fin 0	-	1.3	2.2	V
Diode forward voltage	VF	Io = 5 A, Tj = 100°C	Fig.3	-	1.2	-	
Bootstrap diode forward voltage	VF(BD)	IF = 0.1 A	-	-	2.0	-	V
Doctobase circuit resistance	R _{BC}	Resistor value for common boot charge line		-	2	-	0
Bootstrap circuit resistance	R _{BS}	Resister values for separate boot charge lines		-	10	-	Ω
lungtion to accept manipulations	θј-с(Т)	IGBT		-	4.5	5.5	
Junction to case thermal resistance	θj-c(D)	FRD] -	-	5.5	6.5	°C/W
Thermal resistance case to sink	Rth(c-s) 1W/mK thermal conductivity			-	0.1	-	
Protection section							
FAULT clearance delay time	FLTCLR	Form time fault condition clears	-	6	9	12	ms
Out the bin on the co	t ON	Io = 10 A	F: F	-	0.48	-	
Switching time	t OFF Inductive load		Fig.5	-	0.54	-	μs

Reference voltage is "V_{SS}" terminal voltage unless otherwise specified.
*1 : At 100 µm thickness of the thermal grease.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Electrical Characteristics Driver Function at Tc = 25°C

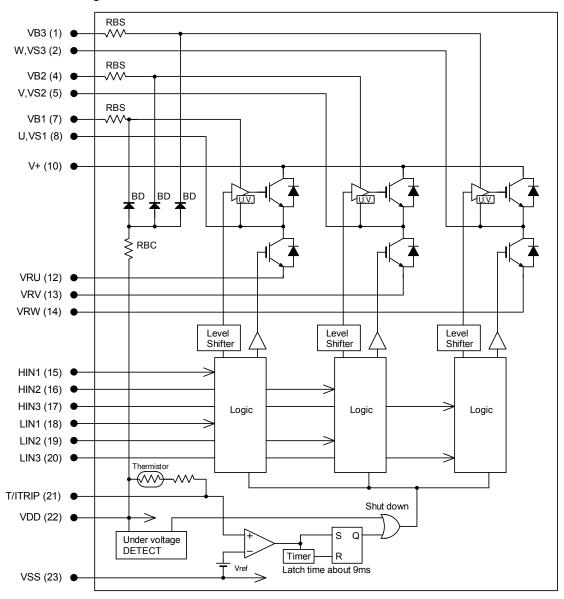
Description	Complete all	Test	Ratings			Linit
Parameter	Symbol	circuit	min	typ	max	Unit
Supply section						
	V _{DDUV+}		40.5	11.1		V
V _{DD} and V _{BS} supply undervoltage protection reset	V _{BSUV+}	-	10.5	11.1	11.7	V
Var and Var aupply under altere protection act	V_{DDUV}		10.3	10.9	11.5	\ \
V _{DD} and V _{BS} supply undervoltage protection set	V_{BSUV}	-	10.3	10.9	11.5	V
Var and Var aupply under altege hyptoresis	V_{DDUVH}		0.14	0.2	1	\ \
V _{DD} and V _{BS} supply undervoltage hysteresis	V_{BSUVH}	-	0.14			V
Quiescent V _{DD} supply current	I _{QDD}	Fig. 4	-	2.0	4.0	mA
Quiescent V _{BS} supply current	I _{QBS}	Fig.4	-	0.08	0.4	mA
Input section						
Logic low input voltage	V _{INL}	-	-	-	0.8	٧
Logic high input voltage	V _{INH}	-	2.5		-	V
Logic 0 input leakage current	I _{IN+}	-	76	118	160	μΑ
Logic 1 input leakage current	I _{IN-}	-	97	150	203	μΑ
ITRIP threshold voltage (OUT = LO or OUT = HI)	V _{ITRIP}	-	3.67	4.17	4.67	V
Dynamic section						
Dead time (Internal dead time injected by driver)	DT	-	220	300	380	ns
ITRIP to shutdown propagation delay	t _{ITRIP}	-	1.0	1.2	1.4	μs
ITRIP blanking time	t _{ITRPBL}	-	-	0.9	-	μs

Reference voltage is "VSS" terminal voltage unless otherwise specified.

Switching Characteristics at Tc = 25°C, VD1, VD2, VD3, VD4 = 15 V

Dogometer	Courselle al	Conditions		1.1:4		
Parameter	Symbol	Conditions	min	typ	max	Unit
Turn-on switching loss	Eon	I _C = 5 A, V+ = 400 V	-	195	-	μJ
Turn-off switching loss	Eoff	V _{DD} = 15 V, L = 3.9 mH,	-	122	-	μJ
Total switching loss	Etot	Tc = 25°C	-	317	-	μJ
Turn-on switching loss	Eon	I _C = 5 A, V+ = 400 V,	-	224	-	μJ
Turn-off switching loss	Eoff	V _{DD} = 15 V, L = 3.9 mH,	-	186	-	μJ
Total switching loss	Etot	Tc = 100°C	-	410	-	μJ
Diode reverse recovery time	trr	I _F = 5A, V+ = 400 V, V _{DD} = 15 V, L = 3.9 mH, Tc = 100°C	-	70	-	ns
Reverse bias safe operating area	RBSOA	Io = 20 A, V _{CE} = 450 V	FU	JLL SQUA	RE	-
Short circuit safe operating area	SCSOA	V _{CE} = 400 V	4	-	-	μs

 $V_{DD} = V_{B1} = V_{B2} = V_{B3} = 15 \text{ V}, V_{SS} = V_{S1} = V_{S2} = V_{S3} = 0 \text{ V}, \text{ outputs loaded with 1 nF, all voltage are referenced to } V_{SS}$; unless otherwise noted.


Internal NTC-Thermistor Characteristics

	Parameter	Conditions	Тур.	Unit
R25	Resistance	Tc = 25°C	100 ±3%	kΩ
R125 Resistance		Tc = 125°C	2.522 ±3%	kΩ
B B-Constant (25 to 50°C)		$R_2 = R_1 e^{[B(1/T2-1/T1)]}$	4250 ±1%	K
Temperature range		-	-40 to +125	°C
Typ. Dissipation constant		Tc=25°C	1	mW/°C

Notes

- 1. The pre-drive power supply low voltage protection has approximately 200 mV of hysteresis and operates as follows.
 - Upper side: The gate is turned off and will return to regular operation when recovering to the normal voltage, but the latch will continue till the input signal will turn 'high'.
 - Lower side: The gate is turned off and will automatically reset when recovering to normal voltage. It does not depend on input signal voltage.
- 2. When assembling the IPM on the heat sink the tightening torque range is 0.6 Nm to 0.9 Nm.
- 3. The pre-drive low voltage protection protects the device when the pre-drive supply voltage falls due to an operating malfunction.
- 4. When use the over-current protection with external shunt resistor, please set the current protection level to be equal to or less than the rating of output peak current (lop).

Equivalent Block Diagram

Module Pin-Out Description

Pin	Name	Description
1	VB3	High Side Floating Supply Voltage 3
2	W, VS3	Output 3, High Side Floating Supply Offset Voltage 3
3	-	Without pin
4	VB2	High Side Floating Supply Voltage 2
5	V, VS2	Output 2, High Side Floating Supply Offset Voltage 2
6	-	Without pin
7	VB1	High Side Floating Supply Voltage 1
8	U, VS1	Output 1, High Side Floating Supply Offset Voltage 1
9	-	Without pin
10	V+	Positive Bus Input Voltage
11	-	Without pin
-	-	-

Pin	Name	Description
12	VRU	Low Side Emitter Connection – Phase 1
13	VRV	Low Side Emitter Connection – Phase 2
14	VRW	Low Side Emitter Connection – Phase 3
15	HIN1	Logic Input High Side Gate Driver – Phase 1
16	HIN2	Logic Input High Side Gate Driver – Phase 2
17	HIN3	Logic Input High Side Gate Driver – Phase 3
18	LIN1	Logic Input Low Side Gate Driver – Phase 1
19	LIN2	Logic Input Low Side Gate Driver – Phase 2
20	LIN3	Logic Input Low Side Gate Driver – Phase 3
21	T/Itrip	Temperature Monitor and Shut-down Pin
22	VDD	+15 V Main Supply
23	VSS	Negative Main Supply

Test Circuit

The tested phase U+ shows the upper side of the U phase and U- shows the lower side of the U phase.

■ ICE / IR(BD)

	U+	V+	W+	U-	V-	W-
М	10	10	10	8	5	2
N	8	5	2	12	13	14

	U(BD)	V(BD)	W(BD)	
М	7	4	1	
N	23	23	23	

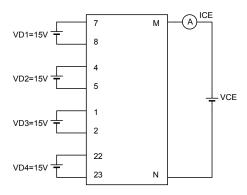
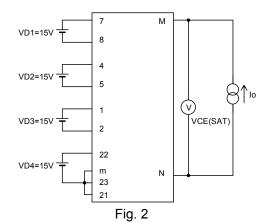



Fig. 1

■ $V_{CE}(SAT)$ (test by pulse)

	U+	V+	W+	U-	V-	W-
М	10	10	10	8	5	2
N	8	5	2	12	13	14
m	15	16	17	18	19	20

■ V_F (test by pulse)

	U+	V+	W+	U-	V-	W-
М	10	10	10	8	5	2
N	8	5	2	12	13	14

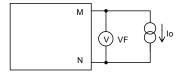


Fig. 3

■ ID

	VD1	VD2	VD3	VD4
М	7	4	1	22
N	8	5	2	23

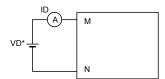
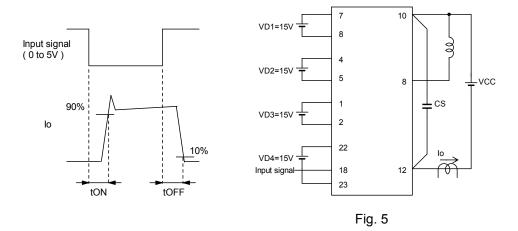
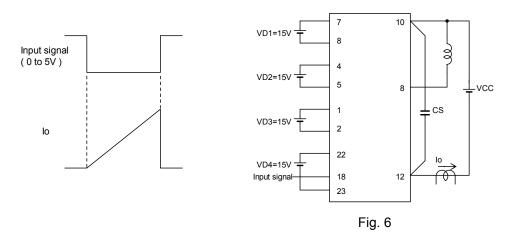




Fig. 4

■ Switching time (The circuit is a representative example of the lower side U phase.)

■ RB-SOA (The circuit is a representative example of the lower side U phase.)

Input / Output Timing Diagram

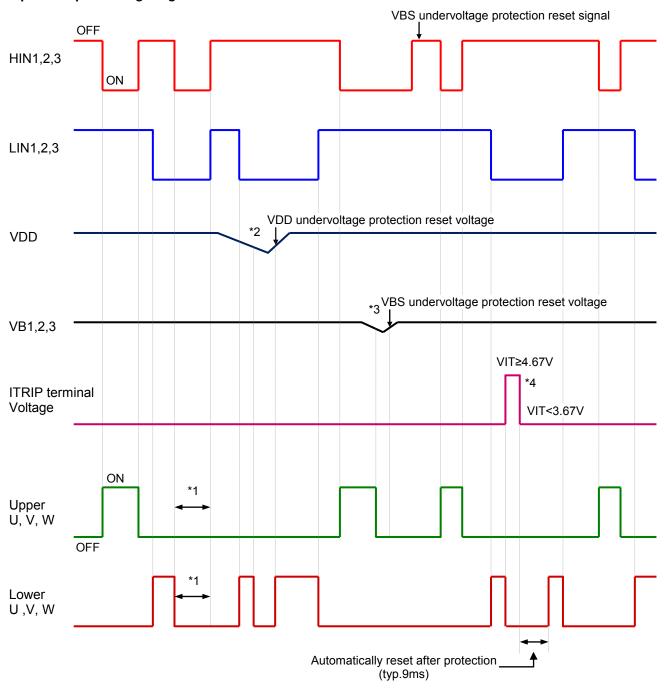
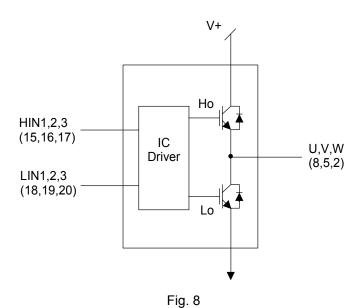
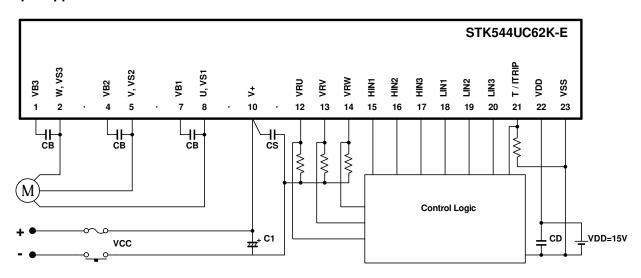



Fig. 7

Notes


- *1 : Shows the prevention of shoot-thru via control logic, however, more dead time must be added to account for switching delay externally.
- *2 : When V_{DD} decreases all gate output signals will go low and cut off all 6 IGBT outputs. When V_{DD} rises the operation will resume immediately.
- *3: When the upper side voltage at VB1, VB2 and VB3 drops only the corresponding upper side output is turned off. The outputs return to normal operation immediately after the upper side gate voltage rises.
- *4 : When VITRIP exceeds threshold all IGBT's are turned off and normal operation resumes 9 ms (typ) after over current condition is removed.

Logic level table

Itrip	HIN1,2,3	LIN1,2,3	U,V,W
0	0	1	V+
0	1	0	0
0	1	1	Х
4	V	V	V

Sample Application Circuit

Recommended Operating Conditions at Tc = 25°C

Item	Cumbal	Conditions	Ratings			Unit
	Symbol		min	typ	max	Unit
Supply voltage	VCC	Between V+ to VRU(VRV,VRW)	0	280	450	V
Pre-driver supply voltage	VD1,2,3	Between VB1 to U,VB2 to V,VB3 to W	12.5	15	17.5	V
	VD4	Between V _{DD} to V _{SS} *1	13.5	15	16.5	
ON-state input voltage	VIN(ON)	HIN1,HIN2,HIN3,LIN1,LIN2,LIN3	0	-	0.3	.,
OFF-state input voltage	VIN(OFF)	terminal	3.0	-	5.0	V
PWM frequency	fPWM	-	1	-	20	kHz
Dead time	DT	Turn-off to turn-on (External)	0.5	-	-	μs
Mounting torque	-	'M3' type screw	0.6	-	0.9	Nm

^{*1 :} Pre-drive power supply (VD4 = 15 ±1.5 V) must be have the capacity of lo = 20 mA (DC), 0.5 A (Peak).

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Usage Precaution

- 1. This IPM includes internal bootstrap diode and resistor. By adding a capacitor CB, a single high side drive voltage is generated; each phase requires an individual bootstrap capacitor. The recommended value of CB is in the range of 1 to 47 µF, however, this value needs to be verified prior to production. When not using the bootstrap circuit, each upper side pre-drive power supply requires an external independent power supply.
- 2. It is essential that wirning length between terminals in the snubber circuit be kept as short as possible to reduce the effect of surge voltages. Recommended value of CS is in the range of 0.1 to 10 μ F.
- 3. VRU, VRV, and VRW terminals are direct outputs of the emitter line of the each lower phase IGBT and can be used to monitor each phase's or collective current with external resistors. IF current is not monitored, each resistor should be short-circuites.
- 4. Disconnection of terminals U, V, or W during normal motor operation will cause damage to IPM, use caution with this connection.
- 5. Zner diode with 10 V is connected with the inside of the signal input terminal. When inputting voltage which exceeds 5 V, connect resistor between the side of the power and the signal input terminal, for the input current of the signal input terminal become equal to or less than 0.5 mA. This resistor is effective with the noise absorption of the signal terminal, too.
- 6. A fuse on V_{CC} is recommended.
- 7. Inside the IPM, a thermistor used as the temperature monitor is connected between V_{DD} terminal and T/ITRIP terminal, therefore, an external pull down resistor connected between the T/ITRIP terminal and V_{SS} terminal should be used. The temperature monitor example application is as follows, please refer the Fig.10, Fig.11, and Fig.12 below.
- 8. All data shown implements an example of the application circuit but does not guarantee a design for the mass production.

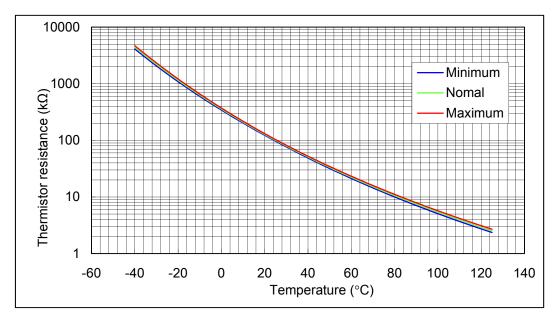


Fig. 10 Variation of thermistor resistance with temperature

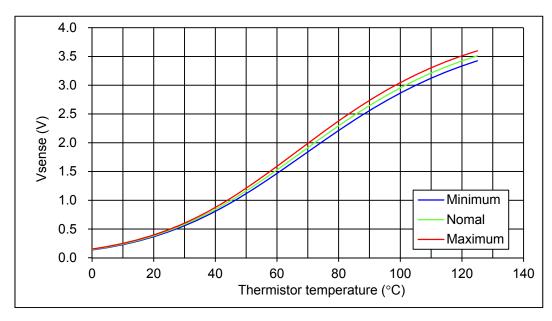


Fig. 11 Variation of temperature sense voltage with thermistor temperature by using external bias resistance of 4.3 k Ω ±1% and V_{DD} = 15 V

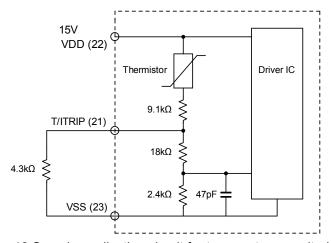


Fig. 12 Sample application circuit for temperature monitoring

The characteristic of PWM switching frequency

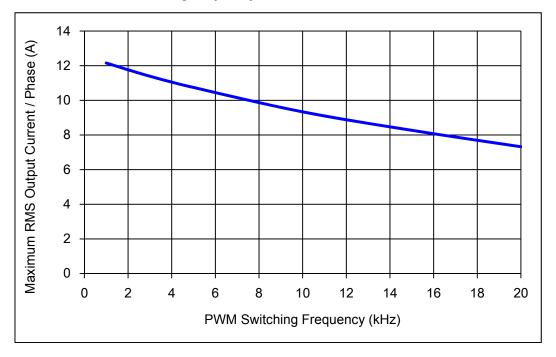


Fig. 13 Maximum sinusoidal phase current as function of switching frequency at Tc = 100°C, V_{CC} = 400 V

Switching waveform

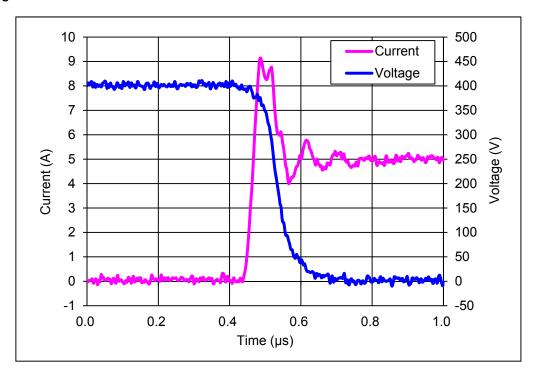


Fig. 14 IGBT Turn-on. Typical turn-on waveform at Tc = 100° C, V_{CC} = 400 V

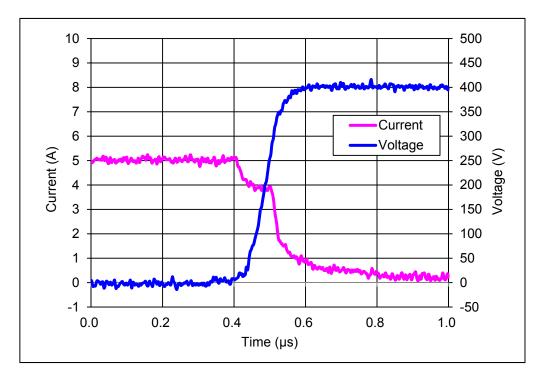


Fig. 15 IGBT Turn-off. Typical turn-off waveform at Tc = 100 $^{\circ}$ C, V $_{CC}$ = 400 V

CB capacitor value calculation for bootstrap circuit

Calculate conditions

Parameter	Symbol	Value	Unit
Upper side power supply	VBS	15	V
Total gate charge of output power IGBT at 15 V	QG	89	nC
Upper limit power supply low voltage protection	UVLO	12	V
Upper side power dissipation	IDMAX	95	μΑ
ON time required for CB voltage to fall from 15 V to UVLO	TONMAX	-	S

Capacitance calculation formula

Thus, the following formula are true VBS \times CB - QG - IDMAX \times TONMAX = UVLO \times CB therefore, CB = (QG + IDMAX \times TONMAX) / (VBS - UVLO)

The relationship between TONMAX and CB becomes as follows. CB is recommended to be approximately 3 times the value calculated above. The recommended value of CB is in the range of 1 to 47 μ F, however, this value needs to be verified prior to production.

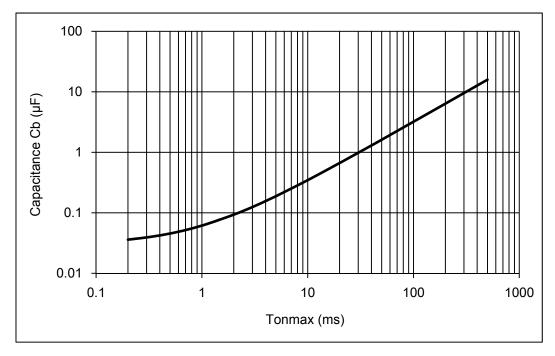


Fig. 16 TONMAX vs CB characteristic

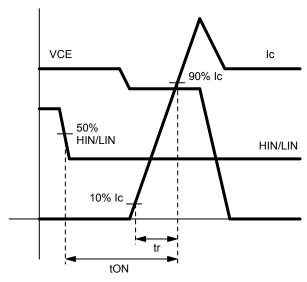


Fig. 17 Input to output propagation turn-on delay time

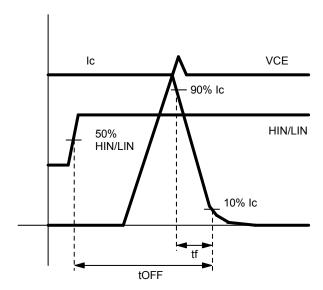
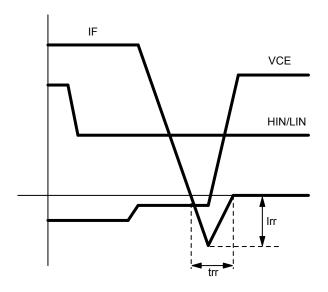
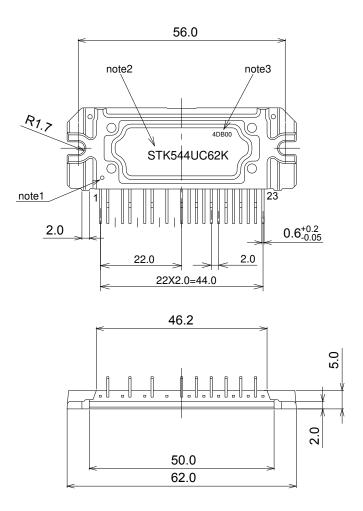
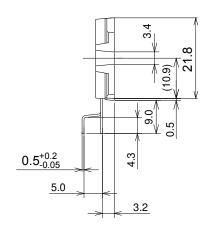


Fig. 18 Input to output propagation turn-off delay time


Fig. 19 Diode reverse recovery

PACKAGE DIMENSIONS

unit: mm

missing pin ;3,6,9,11

note1: Mark for No.1 pin identification.

note2: The form of a character in this drawing differs from that of IPM.

note3 : This indicates the lot code.

The form of a character in this drawing differs from that of IPM.

The tolerances of length are +/- 0.5 mm unless otherwise specified.

ORDERING INFORMATION

OTIDETHING IN OTHINATION							
Device	Package Shipping (Qty						
STK544UC62K-E	SIP23 (Pb-Free)	8 / Tube					

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer