

Data Sheet B7714

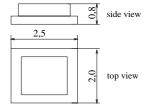
B7714

Low-Loss Filter for Mobile Communication

1842,5 MHz

Data Sheet

Features

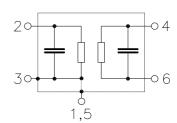

- Low-loss RF filter for mobile telephone PCN systems, receive path
- High selectivity
- Low amplitude ripple
- Usable passband 75 MHz
- Unbalanced to balanced operation
- No external matching required
- Suitable for GPRS class 1 to 12
- Package for Surface Mounted Technology (SMT)

Terminals

■ Gold-plated Ni

0,1 1 2 3 bottom view 6 5 4 0,5

Chip Sized SAW Package DCS6I



Dimensions in mm, approx. weight 0,014 g

Pin configuration

2 Input

4, 6 Balanced output 1, 3, 5 To be grounded

Туре	Ordering code	Marking and Package according to	Packing according to		
B7714	B39182-B7714-C610	C61157-A7-A76	F61074-V8123-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	Т	- 10 / + 80	°C	
Storage temperature range	T_{stg}	- 40 / + 85	°C	
DC voltage	$V_{\rm DC}$	5	V	
ESD voltage	V^*_{ESD}	50*	V	Machine Model, 10 pulses
Input power max at GSM850,GSM900 GSM1800, GSM1900 Tx bands	P _{IN} P _{IN}	15 12	dBm dBm	peak power of GSM signal, duty cycle 4:8

^{* -} acc. to JESD22-A115A (Machine Model), 10 negative & 10 positive pulses

B7714

Low-Loss Filter for Mobile Communication

1842,5 MHz

Data Sheet

 \equiv MD

Characteristics

Operating Temperature Range: $T = +25 + 2^{\circ}C$

Terminating source impedance: $Z_{\rm S} = 50~\Omega$ (unbalanced) Terminating load impedance: $Z_{\rm L} = 50~\Omega$ (balanced)

				min.	typ.	max.	
Center frequency			$f_{\mathbb{C}}$		1842,5	_	MHz
Maximum insertion attenu		N 41 1-	α_{max}		0.0	0.5*	4D
1809	5,0 1880,0	MHz		_	2,9	3,5*	dB
Amplitude ripple (p-p)			Δα				
	5,0 1880,0	MHz		_	0,8	1,4	dB
Input VSWR							
	5,0 1880,0	MHz		_	2,0	2,2	
Output VSWR	5,0 1880,0	MHz			1,7	1,9	
100	5,0 1000,0	1711 12			1,7	1,5	
Output phase balance (S_{31})- $\phi(S_{21}$)+180)°)					
180	5,0 1880,0	MHz		-15	<u>—</u>	+15	degree
Output amplitude balance	U						
	5,0 1880,0	MHz	•	-2,0	_	2,0	dB
Diff. to common mode su	ppression 5,0 1880,0	MHz	S_{sc12}	18	20,5		dB
	5,0 995,0	MHz		18	20,5		dB
	0,0 1990,0	MHz		18	19,5	_	dB
342	0,0 3980,0	MHz		18	28	_	dB
Attenuation			α				
	0,0 1500,0	MHz		35	37	_	dB
	0,0 1705,0 5,0 1785,0	MHz MHz		27 12	33 14	_	dB dB
	0,0 1785,0	MHz		18	20		dB
	0,0 2100,0	MHz		23	25	_	dB
	0,0 2900,0	MHz		27	29	_	dB
	0,0 3100,0	MHz		25	28	_	dB
310		MHz		23	26	_	dB
340		MHz		20	23	_	dB
400 520		MHz MHz		17 15	19 17	_	dB dB
520	J,U 6UUU,U	IVI⊓Z		15	17	_	ub

^{*} the insertion attenuation includes also pcb losses of typ. 0,2dB

B7714

Low-Loss Filter for Mobile Communication

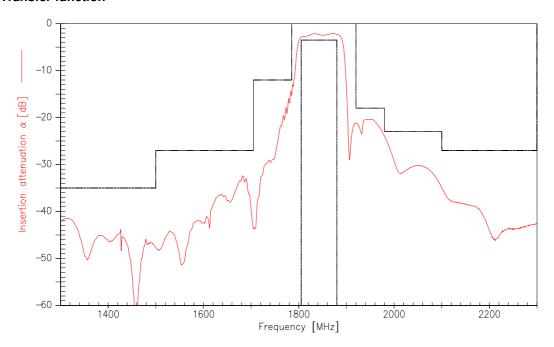
1842,5 MHz

Data Sheet

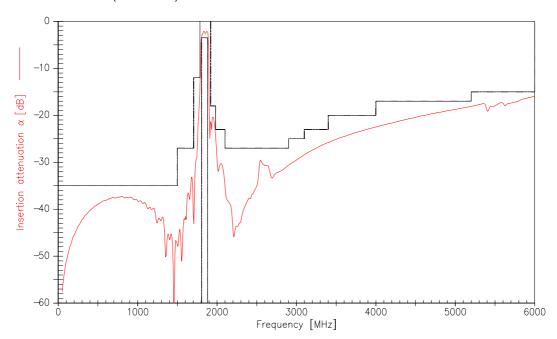
 \equiv MD

Characteristics

Operating Temperature Range: $T=-10 \text{ to } +80 ^{\circ}\text{C}$ Terminating source impedance: $Z_{\text{S}}=50 \ \Omega$ (unbalanced) Terminating load impedance: $Z_{\text{L}}=50 \ \Omega$ (balanced)


			min.	typ.	max.	
Center frequency	i	f _C		1842,5	_	MHz
Maximum insertion attenuation		ď				
1805,0 1880,0	MHz	α_{max}	_	3,2	4,0*	dB
,-				-,	,-	
Amplitude ripple (p-p)		Δα				
1805,0 1880,0	MHz		_	1,1	1,9	dB
Input VSWR						
1805,0 1880,0	MHz		_	2,2	2,4	
Output VSWR				,	,	
1805,0 1880,0	MHz			1,9	2,1	
Output phase belones (±(C) ±(C) ±100°	2)					
Output phase balance $(\phi(S_{31})-\phi(S_{21})+180^{\circ}$ 1805,0 1880,0) MHz		-15		+15	degree
Output amplitude balance ($ S_{31}/S_{21} $)	IVII IZ		-13	_	+13	uegree
1805,0 1880,0	MHz		-2,0	_	2,0	dB
Diff. to common mode suppression		S _{sc12}	,		,	
1805,0 1880,0	MHz	0012	18	20,5	_	dB
855,0 995,0	MHz		18	28	_	dB
1710,0 1990,0	MHz		18	19,5	_	dB
3420,0 3980,0	MHz		18	28	_	dB
Attenuation		α				
0,0 1500,0	MHz		35	37	_	dB
1500,0 1705,0	MHz		27	33	_	dB
1705,0 1785,0	MHz		10	12	_	dB
1920,0 1980,0	MHz		18	20	_	dB
1980,0 2100,0	MHz		23	25	_	dB
2100,0 2900,0	MHz		27	29	_	dB
2900,0 3100,0	MHz		25	27	_	dB
3100,0 3400,0	MHz		23	26	_	dB
3400,0 4000,0	MHz		20	23	<u> </u>	dB
4000,0 5200,0	MHz		17	19	_	dB
5200,0 6000,0	MHz		15	17	_	dB

^{*} the insertion attenuation includes also pcb losses of typ. 0,2dB



SAW Components Low-Loss Filter for Mobile Communication 1842,5 MHz Data Sheet

Transfer function

Transfer function (wide band)

Low-Loss Filter for Mobile Communication

1842,5 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC PD P.O. Box 80 17 09, D-81617 München

© EPCOS AG 2004. All Rights Reserved. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

The information contained in this brochure describes the type of component and shall not be considered as guaranteed characteristics. Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.